Calculator search results

Formula
Find the sum or difference of the fractions
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
$\left( - \dfrac{ 3 }{ 4 } \right) + \left( + \dfrac{ 5 }{ 12 } \right)$
$- \dfrac { 1 } { 3 }$
Find the sum or difference of the fractions
$- \dfrac { 3 } { \color{#FF6800}{ 4 } } + \dfrac { 5 } { \color{#FF6800}{ 12 } }$
$ $ The smallest common multiple in denominator is $ 12$
$- \dfrac { 3 } { \color{#FF6800}{ 4 } } + \dfrac { 5 } { \color{#FF6800}{ 12 } }$
$- \dfrac { 3 } { 4 } + \dfrac { 5 } { 12 }$
$ $ Multiply the denominator and the numerator so that the denominator is the smallest common multiple $ $
$- \dfrac { 3 \times \color{#FF6800}{ 3 } } { 4 \times \color{#FF6800}{ 3 } } + \dfrac { 5 } { 12 }$
$\color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 3 \times 3 } { 4 \times 3 } } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { 5 } { 12 } }$
$ $ Organize the expression $ $
$\color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 9 } { 12 } } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { 5 } { 12 } }$
$\color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 9 } { 12 } } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { 5 } { 12 } }$
$ $ Since the denominator is the same as $ 12 $ , combine the fractions into one $ $
$\color{#FF6800}{ \dfrac { - 9 + 5 } { 12 } }$
$\dfrac { \color{#FF6800}{ - } \color{#FF6800}{ 9 } \color{#FF6800}{ + } \color{#FF6800}{ 5 } } { 12 }$
$ $ Add $ - 9 $ and $ 5$
$\dfrac { \color{#FF6800}{ - } \color{#FF6800}{ 4 } } { 12 }$
$\dfrac { \color{#FF6800}{ - } \color{#FF6800}{ 4 } } { 12 }$
$ $ Move the minus sign to the front of the fraction $ $
$\color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 4 } { 12 } }$
$\color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 4 } { 12 } }$
$ $ Reduce the fraction to the lowest term $ $
$\color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 1 } { 3 } }$
Solution search results
search-thumbnail-If the sum of two consecutive 
numbers is $45$ and one number is $X$ 
.This statement in the form of 
equation $1s:$ 
$\left(1$ Point) $\right)$ 
$○5x+1$ $1eft\left(x+1$ $r1gnt\right)=45s$ 
$○sx+1ef\left(x+2$ $r1gnt\right)=145s$ 
$sx+1x=45s$
7th-9th grade
Algebra
search-thumbnail-$s|ef\left(-1n$ $\left($ }\right)^{50}\ $\right)$ \ | | is\ equal\ to\ $S$ 
$s1S$ 
$S-1S$ 
$s2S$ 
$s50s$
7th-9th grade
Other
search-thumbnail-Which of the following rational numbers are 
equivalent? 
$0Ptionsy$ 
A \frac{5}{6}, \frac{30}{36} 
B $s\sqrt{rac\left(} -2\right)\left(3\right)\sqrt{1rac} \sqrt{4\right)16\right)4} $ 
C $s\sqrt{11aC\left(} -4\right)1-7b,\sqrt{1rac\left(16\sqrt{35\right)9} } $ 
D \frac{1}{2},\frac{3}{8}
7th-9th grade
Other
Have you found the solution you wanted?
Try again
Try more features at QANDA!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo