Calculator search results

Formula
Calculate the value
Answer
circle-check-icon
expand-arrow-icon
$\left( - \dfrac{ 3 }{ 11 } \right) \times \left( - \dfrac{ 4 }{ 9 } \right) \times 22 \times \left( - \dfrac{ 3 }{ 2 } \right)$
$- 4$
Calculate the value
$\color{#FF6800}{ - } \dfrac { 3 } { 11 } \times \left ( \color{#FF6800}{ - } \dfrac { 4 } { 9 } \right ) \times 22 \times \left ( \color{#FF6800}{ - } \dfrac { 3 } { 2 } \right )$
$ $ If you multiply negative numbers by odd numbers, move the (-) sign forward $ $
$\color{#FF6800}{ - } \left ( \dfrac { 3 } { 11 } \times \dfrac { 4 } { 9 } \times 22 \times \dfrac { 3 } { 2 } \right )$
$- \left ( \dfrac { 3 } { 11 } \times \dfrac { 4 } { 9 } \color{#FF6800}{ \times } \color{#FF6800}{ 22 } \times \dfrac { 3 } { 2 } \right )$
$ $ Natural numbers can be expressed as fractions with a denominator of 1 $ $
$- \left ( \dfrac { 3 } { 11 } \times \dfrac { 4 } { 9 } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 22 } { 1 } } \times \dfrac { 3 } { 2 } \right )$
$- \left ( \dfrac { \color{#FF6800}{ 3 } } { \color{#FF6800}{ 11 } } \times \dfrac { \color{#FF6800}{ 4 } } { \color{#FF6800}{ 9 } } \times \dfrac { \color{#FF6800}{ 22 } } { 1 } \times \dfrac { \color{#FF6800}{ 3 } } { \color{#FF6800}{ 2 } } \right )$
$ $ Reduce all denominators and numerators that can be reduced $ $
$- \left ( \dfrac { \color{#FF6800}{ 1 } } { \color{#FF6800}{ 1 } } \times \dfrac { \color{#FF6800}{ 2 } } { \color{#FF6800}{ 1 } } \times \dfrac { \color{#FF6800}{ 2 } } { 1 } \times \dfrac { \color{#FF6800}{ 1 } } { \color{#FF6800}{ 1 } } \right )$
$- \left ( \color{#FF6800}{ \dfrac { 1 } { 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 2 } { 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 2 } { 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 1 } { 1 } } \right )$
$ $ numerator multiply between numerator, and denominators multiply between denominators $ $
$- \color{#FF6800}{ \dfrac { 1 \times 2 \times 2 \times 1 } { 1 \times 1 \times 1 \times 1 } }$
$- \dfrac { \color{#FF6800}{ 1 } \times 2 \times 2 \color{#FF6800}{ \times } \color{#FF6800}{ 1 } } { 1 \times 1 \times 1 \times 1 }$
$ $ Multiplying any number by 1 does not change the value $ $
$- \dfrac { 2 \times 2 } { 1 \times 1 \times 1 \times 1 }$
$- \dfrac { \color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } } { 1 \times 1 \times 1 \times 1 }$
$ $ Multiply $ 2 $ and $ 2$
$- \dfrac { \color{#FF6800}{ 4 } } { 1 \times 1 \times 1 \times 1 }$
$- \dfrac { 4 } { \color{#FF6800}{ 1 } \color{#FF6800}{ \times } \color{#FF6800}{ 1 } \color{#FF6800}{ \times } \color{#FF6800}{ 1 } \color{#FF6800}{ \times } \color{#FF6800}{ 1 } }$
$ $ Multiplying any number by 1 does not change the value $ $
$- \dfrac { 4 } { 1 }$
$- \dfrac { 4 } { \color{#FF6800}{ 1 } }$
$ $ If the denominator is 1, the denominator can be removed $ $
$- \color{#FF6800}{ 4 }$
Solution search results
search-thumbnail-If the sum of two consecutive 
numbers is $45$ and one number is $X$ 
.This statement in the form of 
equation $1s:$ 
$\left(1$ Point) $\right)$ 
$○5x+1$ $1eft\left(x+1$ $r1gnt\right)=45s$ 
$○sx+1ef\left(x+2$ $r1gnt\right)=145s$ 
$sx+1x=45s$
7th-9th grade
Algebra
search-thumbnail-$s|ef\left(-1n$ $\left($ }\right)^{50}\ $\right)$ \ | | is\ equal\ to\ $S$ 
$s1S$ 
$S-1S$ 
$s2S$ 
$s50s$
7th-9th grade
Other
search-thumbnail-Which of the following rational numbers are 
equivalent? 
$0Ptionsy$ 
A \frac{5}{6}, \frac{30}{36} 
B $s\sqrt{rac\left(} -2\right)\left(3\right)\sqrt{1rac} \sqrt{4\right)16\right)4} $ 
C $s\sqrt{11aC\left(} -4\right)1-7b,\sqrt{1rac\left(16\sqrt{35\right)9} } $ 
D \frac{1}{2},\frac{3}{8}
7th-9th grade
Other
Have you found the solution you wanted?
Try again
Try more features at QANDA!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo