# Calculator search results

Formula
Calculate the value
$\left( - \dfrac{ 3 }{ 11 } \right) \times \left( - \dfrac{ 4 }{ 9 } \right) \times 22 \times \left( - \dfrac{ 3 }{ 2 } \right)$
$- 4$
Calculate the value
$\color{#FF6800}{ - } \dfrac { 3 } { 11 } \times \left ( \color{#FF6800}{ - } \dfrac { 4 } { 9 } \right ) \times 22 \times \left ( \color{#FF6800}{ - } \dfrac { 3 } { 2 } \right )$
 If you multiply negative numbers by odd numbers, move the (-) sign forward 
$\color{#FF6800}{ - } \left ( \dfrac { 3 } { 11 } \times \dfrac { 4 } { 9 } \times 22 \times \dfrac { 3 } { 2 } \right )$
$- \left ( \dfrac { 3 } { 11 } \times \dfrac { 4 } { 9 } \color{#FF6800}{ \times } \color{#FF6800}{ 22 } \times \dfrac { 3 } { 2 } \right )$
 Natural numbers can be expressed as fractions with a denominator of 1 
$- \left ( \dfrac { 3 } { 11 } \times \dfrac { 4 } { 9 } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 22 } { 1 } } \times \dfrac { 3 } { 2 } \right )$
$- \left ( \dfrac { \color{#FF6800}{ 3 } } { \color{#FF6800}{ 11 } } \times \dfrac { \color{#FF6800}{ 4 } } { \color{#FF6800}{ 9 } } \times \dfrac { \color{#FF6800}{ 22 } } { 1 } \times \dfrac { \color{#FF6800}{ 3 } } { \color{#FF6800}{ 2 } } \right )$
 Reduce all denominators and numerators that can be reduced 
$- \left ( \dfrac { \color{#FF6800}{ 1 } } { \color{#FF6800}{ 1 } } \times \dfrac { \color{#FF6800}{ 2 } } { \color{#FF6800}{ 1 } } \times \dfrac { \color{#FF6800}{ 2 } } { 1 } \times \dfrac { \color{#FF6800}{ 1 } } { \color{#FF6800}{ 1 } } \right )$
$- \left ( \color{#FF6800}{ \dfrac { 1 } { 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 2 } { 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 2 } { 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 1 } { 1 } } \right )$
 numerator multiply between numerator, and denominators multiply between denominators 
$- \color{#FF6800}{ \dfrac { 1 \times 2 \times 2 \times 1 } { 1 \times 1 \times 1 \times 1 } }$
$- \dfrac { \color{#FF6800}{ 1 } \times 2 \times 2 \color{#FF6800}{ \times } \color{#FF6800}{ 1 } } { 1 \times 1 \times 1 \times 1 }$
 Multiplying any number by 1 does not change the value 
$- \dfrac { 2 \times 2 } { 1 \times 1 \times 1 \times 1 }$
$- \dfrac { \color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } } { 1 \times 1 \times 1 \times 1 }$
 Multiply $2$ and $2$
$- \dfrac { \color{#FF6800}{ 4 } } { 1 \times 1 \times 1 \times 1 }$
$- \dfrac { 4 } { \color{#FF6800}{ 1 } \color{#FF6800}{ \times } \color{#FF6800}{ 1 } \color{#FF6800}{ \times } \color{#FF6800}{ 1 } \color{#FF6800}{ \times } \color{#FF6800}{ 1 } }$
 Multiplying any number by 1 does not change the value 
$- \dfrac { 4 } { 1 }$
$- \dfrac { 4 } { \color{#FF6800}{ 1 } }$
 If the denominator is 1, the denominator can be removed 
$- \color{#FF6800}{ 4 }$
Solution search results