qanda-logo
apple logogoogle play logo

Calculator search results

Formula
Find the sum or difference of the fractions
Answer
circle-check-icon
expand-arrow-icon
$\left( - \dfrac{ 2 }{ 7 } \right) + \dfrac{ 4 }{ 21 }$
$- \dfrac { 2 } { 21 }$
Find the sum or difference of the fractions
$- \dfrac { 2 } { \color{#FF6800}{ 7 } } + \dfrac { 4 } { \color{#FF6800}{ 21 } }$
$ $ The smallest common multiple in denominator is $ 21$
$- \dfrac { 2 } { \color{#FF6800}{ 7 } } + \dfrac { 4 } { \color{#FF6800}{ 21 } }$
$- \dfrac { 2 } { 7 } + \dfrac { 4 } { 21 }$
$ $ Multiply the denominator and the numerator so that the denominator is the smallest common multiple $ $
$- \dfrac { 2 \times \color{#FF6800}{ 3 } } { 7 \times \color{#FF6800}{ 3 } } + \dfrac { 4 } { 21 }$
$\color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 2 \times 3 } { 7 \times 3 } } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { 4 } { 21 } }$
$ $ Organize the expression $ $
$\color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 6 } { 21 } } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { 4 } { 21 } }$
$\color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 6 } { 21 } } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { 4 } { 21 } }$
$ $ Since the denominator is the same as $ 21 $ , combine the fractions into one $ $
$\color{#FF6800}{ \dfrac { - 6 + 4 } { 21 } }$
$\dfrac { \color{#FF6800}{ - } \color{#FF6800}{ 6 } \color{#FF6800}{ + } \color{#FF6800}{ 4 } } { 21 }$
$ $ Add $ - 6 $ and $ 4$
$\dfrac { \color{#FF6800}{ - } \color{#FF6800}{ 2 } } { 21 }$
$\dfrac { \color{#FF6800}{ - } \color{#FF6800}{ 2 } } { 21 }$
$ $ Move the minus sign to the front of the fraction $ $
$\color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 2 } { 21 } }$
Solution search results
search-thumbnail-If the sum of two consecutive 
numbers is $45$ and one number is $X$ 
.This statement in the form of 
equation $1s:$ 
$\left(1$ Point) $\right)$ 
$○5x+1$ $1eft\left(x+1$ $r1gnt\right)=45s$ 
$○sx+1ef\left(x+2$ $r1gnt\right)=145s$ 
$sx+1x=45s$
7th-9th grade
Algebra
search-thumbnail-$s|ef\left(-1n$ $\left($ }\right)^{50}\ $\right)$ \ | | is\ equal\ to\ $S$ 
$s1S$ 
$S-1S$ 
$s2S$ 
$s50s$
7th-9th grade
Other
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo