Solve the system of equations 2x-y=1; x+2y=8 graphically and find the coordinates of the points where corresponding lines intersect y-axis.
Symbol
Search
App Store
Google Play
Calculator search results
Calculate the value
Answer
See the solving process
$\dfrac { 4 } { 15 }$
Calculate the value
$\color{#FF6800}{ - } \dfrac { 1 } { 6 } \times \left ( \color{#FF6800}{ - } \dfrac { 2 } { 3 } \right ) \div \color{#FF6800}{ \dfrac { 5 } { 12 } }$
$ $ Since negative numbers are multiplied by an even number, remove the (-) sign $ $
$\dfrac { 1 } { 6 } \times \dfrac { 2 } { 3 } \div \dfrac { 5 } { 12 }$
$\dfrac { 1 } { 6 } \times \dfrac { 2 } { 3 } \color{#FF6800}{ \div } \color{#FF6800}{ \dfrac { \color{#FF6800}{ 5 } } { \color{#FF6800}{ 12 } } }$
$ $ Convert division to multiplication $ $
$\dfrac { 1 } { 6 } \times \dfrac { 2 } { 3 } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { \color{#FF6800}{ 12 } } { \color{#FF6800}{ 5 } } }$
$\color{#FF6800}{ \dfrac { \color{#FF6800}{ 1 } } { \color{#FF6800}{ 6 } } } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { \color{#FF6800}{ 2 } } { \color{#FF6800}{ 3 } } } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { \color{#FF6800}{ 12 } } { \color{#FF6800}{ 5 } } }$
$ $ Calculate the product of rational numbers $ $
$\color{#FF6800}{ \dfrac { \color{#FF6800}{ 4 } } { \color{#FF6800}{ 15 } } }$
Solution search results
$8$ $\left(1$ Point) $1\right)$ The\ reciprocal\\ $0+11\right)$ \left(\frac{2} $c\left(2\right)$ {5}\right)^0\ $\right)$ \ $1111s\right)$ $S$ $S1S$ $s3S$ $S4S$ $s2S$
7th-9th grade
Other
Search count: 4,895
Check solution
The is the statement of the Mean Value Theorem from your $te\times tb00k$ $Tneoren$ $m4.5$ $Ne8n$ Value Theorem Let f be continuous over $leclose$ interval $\left(a.b\right)aod$ $i$ $eo$ $xd$ $csnlc$ $\left(ab\right)$ $mmd$ exists at least one point cE $\left(a.b\right)$ $si1dhtba$ $f^{'}\left(c\right)=\dfrac {f\left(b\right)-f\left(a\right)} {b-a}$ What is the geometric interpretation of the conclusion of the theorem? O The tangent line to the graph of \(f\left(x\right)\) at $l\left(c1\right)$ is parallel to the secant line connecting \(\left(a,f\left(a\right)\right)\) and \(\left(b,f\left(b\right)\right)\). O The tangent line to the graph of $\left(f\left(lef\left(x\left(right\right)$ at \(c\) is the secant line connecting \(\left(a,f\left(a\right)\right)\) $ana$ \(\left(b,f\left(b\right)\right)\). O The tangent line to the graph $of$ $\left(f\left(leF\left(x\left(right\right)\left(\right)at1\left(c1\right)is$ perpendicular to the secant line connecting \(\left(a,f\left(a\right)\right)\) and A(\left(b,f\left(b\right)\right)\). O The tangent line to the graph of $\left(fleH\left(x\right)nght\right)\right)\right)$ $at$ $\left(c\right)\right)ishoizonta|$ $Tnere$ is more than one tangent line to the graph $0no$ $\left(flcf\left(x\right)night\right)\left($ $at1\left(c1\right)$
Calculus
Search count: 3,278
Check solution
Can you answer this? $20$ $25$ $18$ $\left($ $\left(A\right)$ $A\right)2$ $21frac\left(5\right)\left(9\right)$ \) $\left(B\right)$ $B\right)$ $1\left(211$ $\left(C\right)$ $1\left(21$ $21+rac\left(7\right)+9\right)$ \) $\left(D\right)$ $1\left(2\right)$ 2\frac{8}{9} $ac\left(8\right)\left(9\right)$ \) $9:18PM\sqrt{} $
1st-6th grade
Algebra
Search count: 1,480
Check solution
Which of the following rational numbers are equivalent? $0Ptionsy$ A \frac{5}{6}, \frac{30}{36} B $s\sqrt{rac\left(} -2\right)\left(3\right)\sqrt{1rac} \sqrt{4\right)16\right)4} $ C $s\sqrt{11aC\left(} -4\right)1-7b,\sqrt{1rac\left(16\sqrt{35\right)9} } $ D \frac{1}{2},\frac{3}{8}
7th-9th grade
Other
Search count: 5,909
Check solution
$\left(int|imits$ $-0a1\left(1-\times n_{2}{\right)_{3}}^{n}$ $x^{A}3dx=7\right)$ $\left($ $frac\left(1\right)\left(40\right)\right)$ $\left($ $\left(troc\left(1\right)\left(35\right)\right)$ $\left(troc\left(1\right)\left(30\right)\right)$ $\left(tr0c\left(1\right)\left(25\right)\right)$
Calculus
Check solution
$s|ef\left(-1n$ $\left($ }\right)^{50}\ $\right)$ \ | | is\ equal\ to\ $S$ $s1S$ $S-1S$ $s2S$ $s50s$
7th-9th grade
Other
Search count: 625
Check solution
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
App Store
Google Play
© 2021 Mathpresso Inc.
|
CEO Jongheun Lee, Yongjae Lee
|
17th Floor, WeWork Seolleung Station III, 428, Seolleung-ro, Gangnam-gu, Seoul
|
EMAIL support.en@mathpresso.com