# Calculator search results

Formula
Calculate the value
$\left( - \dfrac{ 1 }{ 4 } \sqrt{ \dfrac{ 5 }{ 4 } } \right) \times \left( - \dfrac{ 8 }{ 3 } \sqrt{ \dfrac{ 24 }{ 5 } } \right)$
$\dfrac { 2 \sqrt{ 6 } } { 3 }$
Calculate the value
$\left ( \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 1 } { 4 } } \sqrt{ \color{#FF6800}{ \dfrac { 5 } { 4 } } } \right ) \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 8 } { 3 } } \sqrt{ \color{#FF6800}{ \dfrac { 24 } { 5 } } } \right )$
 Get rid of unnecessary parentheses 
$\color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 1 } { 4 } } \sqrt{ \color{#FF6800}{ \dfrac { 5 } { 4 } } } \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 8 } { 3 } } \right ) \sqrt{ \color{#FF6800}{ \dfrac { 24 } { 5 } } }$
$\color{#FF6800}{ - } \dfrac { 1 } { 4 } \sqrt{ \dfrac { 5 } { 4 } } \times \left ( \color{#FF6800}{ - } \dfrac { 8 } { 3 } \right ) \sqrt{ \dfrac { 24 } { 5 } }$
 Since negative numbers are multiplied by an even number, remove the (-) sign 
$\dfrac { 1 } { 4 } \sqrt{ \dfrac { 5 } { 4 } } \times \dfrac { 8 } { 3 } \sqrt{ \dfrac { 24 } { 5 } }$
$\color{#FF6800}{ \dfrac { 1 } { 4 } } \sqrt{ \color{#FF6800}{ \dfrac { 5 } { 4 } } } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 8 } { 3 } } \sqrt{ \color{#FF6800}{ \dfrac { 24 } { 5 } } }$
 Calculate the value that contains root 
$\color{#FF6800}{ \dfrac { 2 \sqrt{ 6 } } { 3 } }$
Solution search results