$\dfrac { 1 } { \color{#FF6800}{ 5 } } + \dfrac { 2 } { \color{#FF6800}{ 15 } }$
$ $ The smallest common multiple in denominator is $ 15$
$\dfrac { 1 } { \color{#FF6800}{ 5 } } + \dfrac { 2 } { \color{#FF6800}{ 15 } }$
$\dfrac { 1 } { 5 } + \dfrac { 2 } { 15 }$
$ $ Multiply the denominator and the numerator so that the denominator is the smallest common multiple $ $
$\dfrac { 1 \times \color{#FF6800}{ 3 } } { 5 \times \color{#FF6800}{ 3 } } + \dfrac { 2 } { 15 }$
$\color{#FF6800}{ \dfrac { \color{#FF6800}{ 1 } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } } { \color{#FF6800}{ 5 } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } } } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { \color{#FF6800}{ 2 } } { \color{#FF6800}{ 15 } } }$
$ $ Organize the expression $ $
$\color{#FF6800}{ \dfrac { \color{#FF6800}{ 3 } } { \color{#FF6800}{ 15 } } } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { \color{#FF6800}{ 2 } } { \color{#FF6800}{ 15 } } }$
$\color{#FF6800}{ \dfrac { \color{#FF6800}{ 3 } } { \color{#FF6800}{ 15 } } } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { \color{#FF6800}{ 2 } } { \color{#FF6800}{ 15 } } }$
$ $ Since the denominator is the same as $ 15 $ , combine the fractions into one $ $
$\color{#FF6800}{ \dfrac { \color{#FF6800}{ 3 } \color{#FF6800}{ + } \color{#FF6800}{ 2 } } { \color{#FF6800}{ 15 } } }$
$\dfrac { \color{#FF6800}{ 3 } \color{#FF6800}{ + } \color{#FF6800}{ 2 } } { 15 }$
$ $ Add $ 3 $ and $ 2$
$\dfrac { \color{#FF6800}{ 5 } } { 15 }$
$\color{#FF6800}{ \dfrac { \color{#FF6800}{ 5 } } { \color{#FF6800}{ 15 } } }$
$ $ Reduce the fraction to the lowest term $ $
$\color{#FF6800}{ \dfrac { \color{#FF6800}{ 1 } } { \color{#FF6800}{ 3 } } }$