Symbol

# Calculator search results

Formula
Find the sum of the fractions
$\left( + \dfrac{ 1 }{ 5 } \right) + \left( + \dfrac{ 2 }{ 15 } \right)$
$\dfrac { 1 } { 3 }$
Find the sum of the fractions
$\dfrac { 1 } { \color{#FF6800}{ 5 } } + \dfrac { 2 } { \color{#FF6800}{ 15 } }$
 The smallest common multiple in denominator is $15$
$\dfrac { 1 } { \color{#FF6800}{ 5 } } + \dfrac { 2 } { \color{#FF6800}{ 15 } }$
$\dfrac { 1 } { 5 } + \dfrac { 2 } { 15 }$
 Multiply the denominator and the numerator so that the denominator is the smallest common multiple 
$\dfrac { 1 \times \color{#FF6800}{ 3 } } { 5 \times \color{#FF6800}{ 3 } } + \dfrac { 2 } { 15 }$
$\color{#FF6800}{ \dfrac { 1 \times 3 } { 5 \times 3 } } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { 2 } { 15 } }$
 Organize the expression 
$\color{#FF6800}{ \dfrac { 3 } { 15 } } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { 2 } { 15 } }$
$\color{#FF6800}{ \dfrac { 3 } { 15 } } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { 2 } { 15 } }$
 Since the denominator is the same as $15$ , combine the fractions into one 
$\color{#FF6800}{ \dfrac { 3 + 2 } { 15 } }$
$\dfrac { \color{#FF6800}{ 3 } \color{#FF6800}{ + } \color{#FF6800}{ 2 } } { 15 }$
 Add $3$ and $2$
$\dfrac { \color{#FF6800}{ 5 } } { 15 }$
$\color{#FF6800}{ \dfrac { 5 } { 15 } }$
 Reduce the fraction to the lowest term 
$\color{#FF6800}{ \dfrac { 1 } { 3 } }$
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture