qanda-logo
apple logogoogle play logo

Calculator search results

Formula
Calculate the value
Answer
circle-check-icon
expand-arrow-icon
$\left( + \dfrac{ 1 }{ 5 } \right) \times \left( + \dfrac{ 3 }{ 7 } \right) \times \left( - \dfrac{ 5 }{ 9 } \right)$
$- \dfrac { 1 } { 21 }$
Calculate the value
$\dfrac { 1 } { 5 } \times \dfrac { 3 } { 7 } \times \left ( \color{#FF6800}{ - } \dfrac { 5 } { 9 } \right )$
$ $ If you multiply negative numbers by odd numbers, move the (-) sign forward $ $
$\color{#FF6800}{ - } \left ( \dfrac { 1 } { 5 } \times \dfrac { 3 } { 7 } \times \dfrac { 5 } { 9 } \right )$
$- \left ( \dfrac { 1 } { \color{#FF6800}{ 5 } } \times \dfrac { \color{#FF6800}{ 3 } } { 7 } \times \dfrac { \color{#FF6800}{ 5 } } { \color{#FF6800}{ 9 } } \right )$
$ $ Reduce all denominators and numerators that can be reduced $ $
$- \left ( \dfrac { 1 } { \color{#FF6800}{ 1 } } \times \dfrac { \color{#FF6800}{ 1 } } { 7 } \times \dfrac { \color{#FF6800}{ 1 } } { \color{#FF6800}{ 3 } } \right )$
$- \left ( \color{#FF6800}{ \dfrac { 1 } { 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 1 } { 7 } } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 1 } { 3 } } \right )$
$ $ numerator multiply between numerator, and denominators multiply between denominators $ $
$- \color{#FF6800}{ \dfrac { 1 \times 1 \times 1 } { 1 \times 7 \times 3 } }$
$- \dfrac { \color{#FF6800}{ 1 } \color{#FF6800}{ \times } \color{#FF6800}{ 1 } \color{#FF6800}{ \times } \color{#FF6800}{ 1 } } { 1 \times 7 \times 3 }$
$ $ Multiplying any number by 1 does not change the value $ $
$- \dfrac { 1 } { 1 \times 7 \times 3 }$
$- \dfrac { 1 } { \color{#FF6800}{ 1 } \times 7 \times 3 }$
$ $ Multiplying any number by 1 does not change the value $ $
$- \dfrac { 1 } { 7 \times 3 }$
$- \dfrac { 1 } { \color{#FF6800}{ 7 } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } }$
$ $ Multiply $ 7 $ and $ 3$
$- \dfrac { 1 } { \color{#FF6800}{ 21 } }$
Solution search results
search-thumbnail-If the sum of two consecutive 
numbers is $45$ and one number is $X$ 
.This statement in the form of 
equation $1s:$ 
$\left(1$ Point) $\right)$ 
$○5x+1$ $1eft\left(x+1$ $r1gnt\right)=45s$ 
$○sx+1ef\left(x+2$ $r1gnt\right)=145s$ 
$sx+1x=45s$
7th-9th grade
Algebra
search-thumbnail-$11.$ Question $11$ 
Solve the $:$ $folloMlng'$ $0<θ<90^{°}$ 
$\left(1\right)$ $2sin^{2}θ=1\right)$ $\left(rac\left(3\right)\left(2\right)\right)$ 
$\left(11\right)$ $3tan^{2}θ+2=3$ 
$\left(111\right)cos^{2}θ$ $11rac\left(1\right)\left(4\right)\right)=$ 
$c\left(1\right)\left(4\right)\right)=11113c\left(1\right)\left(2\right)\right)$
10th-13th grade
Trigonometry
search-thumbnail-Which of the following rational numbers are 
equivalent? 
$0Ptionsy$ 
A \frac{5}{6}, \frac{30}{36} 
B $s\sqrt{rac\left(} -2\right)\left(3\right)\sqrt{1rac} \sqrt{4\right)16\right)4} $ 
C $s\sqrt{11aC\left(} -4\right)1-7b,\sqrt{1rac\left(16\sqrt{35\right)9} } $ 
D \frac{1}{2},\frac{3}{8}
7th-9th grade
Other
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo