# Calculator search results

Formula
Calculate the value
$\left( \sqrt{ 3 } +1 \right) ^{ 5 } \times \left( \dfrac{ 1 }{ \sqrt{ 3 } -1 } \right) ^{ -5 }$
$32$
Calculate the value
$\left ( \sqrt{ \color{#FF6800}{ 3 } } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) ^ { \color{#FF6800}{ 5 } } \left ( \dfrac { 1 } { \sqrt{ 3 } - 1 } \right ) ^ { - 5 }$
 Calculate power 
$\left ( \color{#FF6800}{ 76 } \color{#FF6800}{ + } \color{#FF6800}{ 44 } \sqrt{ \color{#FF6800}{ 3 } } \right ) \left ( \dfrac { 1 } { \sqrt{ 3 } - 1 } \right ) ^ { - 5 }$
$\left ( 76 + 44 \sqrt{ 3 } \right ) \left ( \dfrac { 1 } { \sqrt{ 3 } - 1 } \right ) ^ { - 5 }$
 Find the conjugate irrational number of denominator 
$\left ( 76 + 44 \sqrt{ 3 } \right ) \left ( \color{#FF6800}{ \dfrac { 1 } { \sqrt{ 3 } - 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { \sqrt{ 3 } + 1 } { \sqrt{ 3 } + 1 } } \right ) ^ { - 5 }$
$\left ( 76 + 44 \sqrt{ 3 } \right ) \left ( \dfrac { 1 } { \sqrt{ 3 } - 1 } \times \dfrac { \sqrt{ 3 } + 1 } { \sqrt{ 3 } + 1 } \right ) ^ { - 5 }$
 The denominator is multiplied by denominator, and the numerator is multiplied by numerator 
$\left ( 76 + 44 \sqrt{ 3 } \right ) \left ( \color{#FF6800}{ \dfrac { 1 \left ( \sqrt{ 3 } + 1 \right ) } { \left ( \sqrt{ 3 } - 1 \right ) \left ( \sqrt{ 3 } + 1 \right ) } } \right ) ^ { - 5 }$
$\left ( 76 + 44 \sqrt{ 3 } \right ) \left ( \dfrac { \color{#FF6800}{ 1 } \left ( \sqrt{ \color{#FF6800}{ 3 } } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) } { \left ( \sqrt{ 3 } - 1 \right ) \left ( \sqrt{ 3 } + 1 \right ) } \right ) ^ { - 5 }$
 Multiply each term in parentheses by $1$
$\left ( 76 + 44 \sqrt{ 3 } \right ) \left ( \dfrac { \color{#FF6800}{ 1 } \sqrt{ \color{#FF6800}{ 3 } } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } { \left ( \sqrt{ 3 } - 1 \right ) \left ( \sqrt{ 3 } + 1 \right ) } \right ) ^ { - 5 }$
$\left ( 76 + 44 \sqrt{ 3 } \right ) \left ( \dfrac { 1 \sqrt{ 3 } + 1 } { \left ( \sqrt{ \color{#FF6800}{ 3 } } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \left ( \sqrt{ \color{#FF6800}{ 3 } } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) } \right ) ^ { - 5 }$
 Expand the expression using $\left(a - b\right)\left(a + b\right) = a^{2} - b^{2}$
$\left ( 76 + 44 \sqrt{ 3 } \right ) \left ( \dfrac { 1 \sqrt{ 3 } + 1 } { \left ( \sqrt{ \color{#FF6800}{ 3 } } \right ) ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 1 } ^ { \color{#FF6800}{ 2 } } } \right ) ^ { - 5 }$
$\left ( 76 + 44 \sqrt{ 3 } \right ) \left ( \dfrac { 1 \sqrt{ 3 } + 1 } { \left ( \sqrt{ \color{#FF6800}{ 3 } } \right ) ^ { \color{#FF6800}{ 2 } } - 1 ^ { 2 } } \right ) ^ { - 5 }$
 Calculate power 
$\left ( 76 + 44 \sqrt{ 3 } \right ) \left ( \dfrac { 1 \sqrt{ 3 } + 1 } { \color{#FF6800}{ 3 } - 1 ^ { 2 } } \right ) ^ { - 5 }$
$\left ( 76 + 44 \sqrt{ 3 } \right ) \left ( \dfrac { 1 \sqrt{ 3 } + 1 } { 3 - \color{#FF6800}{ 1 } ^ { \color{#FF6800}{ 2 } } } \right ) ^ { - 5 }$
 Calculate power 
$\left ( 76 + 44 \sqrt{ 3 } \right ) \left ( \dfrac { 1 \sqrt{ 3 } + 1 } { 3 - \color{#FF6800}{ 1 } } \right ) ^ { - 5 }$
$\left ( 76 + 44 \sqrt{ 3 } \right ) \left ( \dfrac { \color{#FF6800}{ 1 } \sqrt{ 3 } + 1 } { 3 - 1 } \right ) ^ { - 5 }$
 Multiplying any number by 1 does not change the value 
$\left ( 76 + 44 \sqrt{ 3 } \right ) \left ( \dfrac { \sqrt{ 3 } + 1 } { 3 - 1 } \right ) ^ { - 5 }$
$\left ( 76 + 44 \sqrt{ 3 } \right ) \left ( \dfrac { \sqrt{ 3 } + 1 } { \color{#FF6800}{ 3 } \color{#FF6800}{ - } \color{#FF6800}{ 1 } } \right ) ^ { - 5 }$
 Subtract $1$ from $3$
$\left ( 76 + 44 \sqrt{ 3 } \right ) \left ( \dfrac { \sqrt{ 3 } + 1 } { \color{#FF6800}{ 2 } } \right ) ^ { - 5 }$
$\left ( 76 + 44 \sqrt{ 3 } \right ) \left ( \dfrac { \sqrt{ 3 } + 1 } { 2 } \right ) ^ { \color{#FF6800}{ - } \color{#FF6800}{ 5 } }$
 If the exponent is negative, change it to a fraction 
$\left ( 76 + 44 \sqrt{ 3 } \right ) \times \dfrac { 1 } { \left ( \dfrac { \sqrt{ 3 } + 1 } { 2 } \right ) ^ { 5 } }$
$\left ( 76 + 44 \sqrt{ 3 } \right ) \times \dfrac { 1 } { \left ( \color{#FF6800}{ \dfrac { \sqrt{ 3 } + 1 } { 2 } } \right ) ^ { \color{#FF6800}{ 5 } } }$
 When raising a fraction to the power, raise the numerator and denominator each to the power 
$\left ( 76 + 44 \sqrt{ 3 } \right ) \times \dfrac { 1 } { \dfrac { \left ( \sqrt{ \color{#FF6800}{ 3 } } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) ^ { \color{#FF6800}{ 5 } } } { \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 5 } } } }$
$\left ( 76 + 44 \sqrt{ 3 } \right ) \times \color{#FF6800}{ \dfrac { 1 } { \dfrac { \left ( \sqrt{ 3 } + 1 \right ) ^ { 5 } } { 2 ^ { 5 } } } }$
 Calculate the complex fraction 
$\left ( 76 + 44 \sqrt{ 3 } \right ) \times \color{#FF6800}{ \dfrac { 2 ^ { 5 } } { \left ( \sqrt{ 3 } + 1 \right ) ^ { 5 } } }$
$\left ( 76 + 44 \sqrt{ 3 } \right ) \times \dfrac { \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 5 } } } { \left ( \sqrt{ 3 } + 1 \right ) ^ { 5 } }$
 Calculate power 
$\left ( 76 + 44 \sqrt{ 3 } \right ) \times \dfrac { \color{#FF6800}{ 32 } } { \left ( \sqrt{ 3 } + 1 \right ) ^ { 5 } }$
$\left ( 76 + 44 \sqrt{ 3 } \right ) \times \dfrac { 32 } { \left ( \sqrt{ \color{#FF6800}{ 3 } } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) ^ { \color{#FF6800}{ 5 } } }$
 Calculate power 
$\left ( 76 + 44 \sqrt{ 3 } \right ) \times \dfrac { 32 } { \color{#FF6800}{ 76 } \color{#FF6800}{ + } \color{#FF6800}{ 44 } \sqrt{ \color{#FF6800}{ 3 } } }$
$\left ( 76 + 44 \sqrt{ 3 } \right ) \times \dfrac { 32 } { 76 + 44 \sqrt{ 3 } }$
 Find the conjugate irrational number of denominator 
$\left ( 76 + 44 \sqrt{ 3 } \right ) \times \color{#FF6800}{ \dfrac { 32 } { 76 + 44 \sqrt{ 3 } } } \times \color{#FF6800}{ \dfrac { 76 - \left ( 44 \sqrt{ 3 } \right ) } { 76 - \left ( 44 \sqrt{ 3 } \right ) } }$
$\left ( 76 + 44 \sqrt{ 3 } \right ) \times \dfrac { 32 } { 76 + 44 \sqrt{ 3 } } \times \dfrac { 76 - \left ( 44 \sqrt{ 3 } \right ) } { 76 - \left ( 44 \sqrt{ 3 } \right ) }$
 The denominator is multiplied by denominator, and the numerator is multiplied by numerator 
$\left ( 76 + 44 \sqrt{ 3 } \right ) \times \color{#FF6800}{ \dfrac { 32 \left ( 76 - \left ( 44 \sqrt{ 3 } \right ) \right ) } { \left ( 76 + 44 \sqrt{ 3 } \right ) \left ( 76 - \left ( 44 \sqrt{ 3 } \right ) \right ) } }$
$\left ( 76 + 44 \sqrt{ 3 } \right ) \times \dfrac { \color{#FF6800}{ 32 } \left ( \color{#FF6800}{ 76 } \color{#FF6800}{ - } \left ( \color{#FF6800}{ 44 } \sqrt{ \color{#FF6800}{ 3 } } \right ) \right ) } { \left ( 76 + 44 \sqrt{ 3 } \right ) \left ( 76 - \left ( 44 \sqrt{ 3 } \right ) \right ) }$
 Multiply each term in parentheses by $32$
$\left ( 76 + 44 \sqrt{ 3 } \right ) \times \dfrac { \color{#FF6800}{ 32 } \color{#FF6800}{ \times } \color{#FF6800}{ 76 } \color{#FF6800}{ + } \color{#FF6800}{ 32 } \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \left ( \color{#FF6800}{ 44 } \sqrt{ \color{#FF6800}{ 3 } } \right ) \right ) } { \left ( 76 + 44 \sqrt{ 3 } \right ) \left ( 76 - \left ( 44 \sqrt{ 3 } \right ) \right ) }$
$\left ( 76 + 44 \sqrt{ 3 } \right ) \times \dfrac { 32 \times 76 + 32 \times \left ( - \left ( 44 \sqrt{ 3 } \right ) \right ) } { \left ( \color{#FF6800}{ 76 } \color{#FF6800}{ + } \color{#FF6800}{ 44 } \sqrt{ \color{#FF6800}{ 3 } } \right ) \left ( \color{#FF6800}{ 76 } \color{#FF6800}{ - } \left ( \color{#FF6800}{ 44 } \sqrt{ \color{#FF6800}{ 3 } } \right ) \right ) }$
 Expand the expression using $\left(a - b\right)\left(a + b\right) = a^{2} - b^{2}$
$\left ( 76 + 44 \sqrt{ 3 } \right ) \times \dfrac { 32 \times 76 + 32 \times \left ( - \left ( 44 \sqrt{ 3 } \right ) \right ) } { \color{#FF6800}{ 76 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \left ( \color{#FF6800}{ 44 } \sqrt{ \color{#FF6800}{ 3 } } \right ) ^ { \color{#FF6800}{ 2 } } }$
$\left ( 76 + 44 \sqrt{ 3 } \right ) \times \dfrac { 32 \times 76 + 32 \times \left ( - \left ( 44 \sqrt{ 3 } \right ) \right ) } { \color{#FF6800}{ 76 } ^ { \color{#FF6800}{ 2 } } - \left ( 44 \sqrt{ 3 } \right ) ^ { 2 } }$
 Calculate power 
$\left ( 76 + 44 \sqrt{ 3 } \right ) \times \dfrac { 32 \times 76 + 32 \times \left ( - \left ( 44 \sqrt{ 3 } \right ) \right ) } { \color{#FF6800}{ 5776 } - \left ( 44 \sqrt{ 3 } \right ) ^ { 2 } }$
$\left ( 76 + 44 \sqrt{ 3 } \right ) \times \dfrac { 32 \times 76 + 32 \times \left ( - \left ( 44 \sqrt{ 3 } \right ) \right ) } { 5776 - \left ( \color{#FF6800}{ 44 } \sqrt{ \color{#FF6800}{ 3 } } \right ) ^ { \color{#FF6800}{ 2 } } }$
 Calculate power 
$\left ( 76 + 44 \sqrt{ 3 } \right ) \times \dfrac { 32 \times 76 + 32 \times \left ( - \left ( 44 \sqrt{ 3 } \right ) \right ) } { 5776 - \color{#FF6800}{ 5808 } }$
$\left ( 76 + 44 \sqrt{ 3 } \right ) \times \dfrac { \color{#FF6800}{ 32 } \color{#FF6800}{ \times } \color{#FF6800}{ 76 } + 32 \times \left ( - \left ( 44 \sqrt{ 3 } \right ) \right ) } { 5776 - 5808 }$
 Multiply $32$ and $76$
$\left ( 76 + 44 \sqrt{ 3 } \right ) \times \dfrac { \color{#FF6800}{ 2432 } + 32 \times \left ( - \left ( 44 \sqrt{ 3 } \right ) \right ) } { 5776 - 5808 }$
$\left ( 76 + 44 \sqrt{ 3 } \right ) \times \dfrac { 2432 + 32 \times \left ( \color{#FF6800}{ - } \left ( 44 \sqrt{ 3 } \right ) \right ) } { 5776 - 5808 }$
 Move the (-) sign forward 
$\left ( 76 + 44 \sqrt{ 3 } \right ) \times \dfrac { 2432 \color{#FF6800}{ - } 32 \left ( 44 \sqrt{ 3 } \right ) } { 5776 - 5808 }$
$\left ( 76 + 44 \sqrt{ 3 } \right ) \times \dfrac { 2432 \color{#FF6800}{ - } \color{#FF6800}{ 32 } \left ( \color{#FF6800}{ 44 } \sqrt{ \color{#FF6800}{ 3 } } \right ) } { 5776 - 5808 }$
 Get rid of unnecessary parentheses 
$\left ( 76 + 44 \sqrt{ 3 } \right ) \times \dfrac { 2432 \color{#FF6800}{ - } \color{#FF6800}{ 32 } \color{#FF6800}{ \times } \color{#FF6800}{ 44 } \sqrt{ \color{#FF6800}{ 3 } } } { 5776 - 5808 }$
$\left ( 76 + 44 \sqrt{ 3 } \right ) \times \dfrac { 2432 \color{#FF6800}{ - } \color{#FF6800}{ 32 } \color{#FF6800}{ \times } \color{#FF6800}{ 44 } \sqrt{ \color{#FF6800}{ 3 } } } { 5776 - 5808 }$
 Simplify the expression 
$\left ( 76 + 44 \sqrt{ 3 } \right ) \times \dfrac { 2432 \color{#FF6800}{ - } \color{#FF6800}{ 1408 } \sqrt{ \color{#FF6800}{ 3 } } } { 5776 - 5808 }$
$\left ( 76 + 44 \sqrt{ 3 } \right ) \times \dfrac { 2432 - 1408 \sqrt{ 3 } } { \color{#FF6800}{ 5776 } \color{#FF6800}{ - } \color{#FF6800}{ 5808 } }$
 Subtract $5808$ from $5776$
$\left ( 76 + 44 \sqrt{ 3 } \right ) \times \dfrac { 2432 - 1408 \sqrt{ 3 } } { \color{#FF6800}{ - } \color{#FF6800}{ 32 } }$
$\left ( 76 + 44 \sqrt{ 3 } \right ) \times \dfrac { 2432 - 1408 \sqrt{ 3 } } { \color{#FF6800}{ - } \color{#FF6800}{ 32 } }$
 Move the minus sign to the front of the fraction 
$\left ( 76 + 44 \sqrt{ 3 } \right ) \times \left ( \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 2432 - 1408 \sqrt{ 3 } } { 32 } } \right )$
$\left ( 76 + 44 \sqrt{ 3 } \right ) \times \left ( - \color{#FF6800}{ \dfrac { 2432 - 1408 \sqrt{ 3 } } { 32 } } \right )$
 Reduce the fraction 
$\left ( 76 + 44 \sqrt{ 3 } \right ) \times \left ( - \left ( \color{#FF6800}{ 76 } \color{#FF6800}{ - } \color{#FF6800}{ 44 } \sqrt{ \color{#FF6800}{ 3 } } \right ) \right )$
$\left ( 76 + 44 \sqrt{ 3 } \right ) \times \left ( \color{#FF6800}{ - } \left ( \color{#FF6800}{ 76 } \color{#FF6800}{ - } \color{#FF6800}{ 44 } \sqrt{ \color{#FF6800}{ 3 } } \right ) \right )$
 Change the symbol of each term in parentheses when there is a (-) symbol in front of parentheses 
$\left ( 76 + 44 \sqrt{ 3 } \right ) \left ( \color{#FF6800}{ - } \color{#FF6800}{ 76 } \color{#FF6800}{ + } \color{#FF6800}{ 44 } \sqrt{ \color{#FF6800}{ 3 } } \right )$
$\left ( \color{#FF6800}{ 76 } \color{#FF6800}{ + } \color{#FF6800}{ 44 } \sqrt{ \color{#FF6800}{ 3 } } \right ) \left ( \color{#FF6800}{ - } \color{#FF6800}{ 76 } \color{#FF6800}{ + } \color{#FF6800}{ 44 } \sqrt{ \color{#FF6800}{ 3 } } \right )$
 Expand using $\left(a + b\right)\left(c + d\right) = ac + ad + bc + bd$
$\color{#FF6800}{ 76 } \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 76 } \right ) \color{#FF6800}{ + } \color{#FF6800}{ 76 } \left ( \color{#FF6800}{ 44 } \sqrt{ \color{#FF6800}{ 3 } } \right ) \color{#FF6800}{ + } \left ( \color{#FF6800}{ 44 } \sqrt{ \color{#FF6800}{ 3 } } \right ) \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 76 } \right ) \color{#FF6800}{ + } \left ( \color{#FF6800}{ 44 } \sqrt{ \color{#FF6800}{ 3 } } \right ) \left ( \color{#FF6800}{ 44 } \sqrt{ \color{#FF6800}{ 3 } } \right )$
$\color{#FF6800}{ 76 } \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 76 } \right ) + 76 \left ( 44 \sqrt{ 3 } \right ) + \left ( 44 \sqrt{ 3 } \right ) \times \left ( - 76 \right ) + \left ( 44 \sqrt{ 3 } \right ) \left ( 44 \sqrt{ 3 } \right )$
 Multiply $76$ and $- 76$
$\color{#FF6800}{ - } \color{#FF6800}{ 5776 } + 76 \left ( 44 \sqrt{ 3 } \right ) + \left ( 44 \sqrt{ 3 } \right ) \times \left ( - 76 \right ) + \left ( 44 \sqrt{ 3 } \right ) \left ( 44 \sqrt{ 3 } \right )$
$- 5776 + \color{#FF6800}{ 76 } \left ( \color{#FF6800}{ 44 } \sqrt{ \color{#FF6800}{ 3 } } \right ) + \left ( 44 \sqrt{ 3 } \right ) \times \left ( - 76 \right ) + \left ( 44 \sqrt{ 3 } \right ) \left ( 44 \sqrt{ 3 } \right )$
 Get rid of unnecessary parentheses 
$- 5776 + \color{#FF6800}{ 76 } \color{#FF6800}{ \times } \color{#FF6800}{ 44 } \sqrt{ \color{#FF6800}{ 3 } } + \left ( 44 \sqrt{ 3 } \right ) \times \left ( - 76 \right ) + \left ( 44 \sqrt{ 3 } \right ) \left ( 44 \sqrt{ 3 } \right )$
$- 5776 + \color{#FF6800}{ 76 } \color{#FF6800}{ \times } \color{#FF6800}{ 44 } \sqrt{ \color{#FF6800}{ 3 } } + \left ( 44 \sqrt{ 3 } \right ) \times \left ( - 76 \right ) + \left ( 44 \sqrt{ 3 } \right ) \left ( 44 \sqrt{ 3 } \right )$
 Simplify the expression 
$- 5776 + \color{#FF6800}{ 3344 } \sqrt{ \color{#FF6800}{ 3 } } + \left ( 44 \sqrt{ 3 } \right ) \times \left ( - 76 \right ) + \left ( 44 \sqrt{ 3 } \right ) \left ( 44 \sqrt{ 3 } \right )$
$- 5776 + 3344 \sqrt{ 3 } + \left ( \color{#FF6800}{ 44 } \sqrt{ \color{#FF6800}{ 3 } } \right ) \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 76 } \right ) + \left ( 44 \sqrt{ 3 } \right ) \left ( 44 \sqrt{ 3 } \right )$
 Get rid of unnecessary parentheses 
$- 5776 + 3344 \sqrt{ 3 } + \color{#FF6800}{ 44 } \sqrt{ \color{#FF6800}{ 3 } } \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 76 } \right ) + \left ( 44 \sqrt{ 3 } \right ) \left ( 44 \sqrt{ 3 } \right )$
$- 5776 + 3344 \sqrt{ 3 } + \color{#FF6800}{ 44 } \sqrt{ \color{#FF6800}{ 3 } } \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 76 } \right ) + \left ( 44 \sqrt{ 3 } \right ) \left ( 44 \sqrt{ 3 } \right )$
 Simplify the expression 
$- 5776 + 3344 \sqrt{ 3 } \color{#FF6800}{ - } \color{#FF6800}{ 3344 } \sqrt{ \color{#FF6800}{ 3 } } + \left ( 44 \sqrt{ 3 } \right ) \left ( 44 \sqrt{ 3 } \right )$
$- 5776 + 3344 \sqrt{ 3 } - 3344 \sqrt{ 3 } + \left ( \color{#FF6800}{ 44 } \sqrt{ \color{#FF6800}{ 3 } } \right ) \left ( \color{#FF6800}{ 44 } \sqrt{ \color{#FF6800}{ 3 } } \right )$
 Get rid of unnecessary parentheses 
$- 5776 + 3344 \sqrt{ 3 } - 3344 \sqrt{ 3 } + \color{#FF6800}{ 44 } \sqrt{ \color{#FF6800}{ 3 } } \color{#FF6800}{ \times } \color{#FF6800}{ 44 } \sqrt{ \color{#FF6800}{ 3 } }$
$- 5776 + 3344 \sqrt{ 3 } - 3344 \sqrt{ 3 } + \color{#FF6800}{ 44 } \sqrt{ \color{#FF6800}{ 3 } } \color{#FF6800}{ \times } \color{#FF6800}{ 44 } \sqrt{ \color{#FF6800}{ 3 } }$
 Simplify the expression 
$- 5776 + 3344 \sqrt{ 3 } - 3344 \sqrt{ 3 } + \color{#FF6800}{ 5808 }$
$- 5776 \color{#FF6800}{ + } \color{#FF6800}{ 3344 } \sqrt{ \color{#FF6800}{ 3 } } \color{#FF6800}{ - } \color{#FF6800}{ 3344 } \sqrt{ \color{#FF6800}{ 3 } } + 5808$
 Eliminate opponent number 
$- 5776 + 5808$
$\color{#FF6800}{ - } \color{#FF6800}{ 5776 } \color{#FF6800}{ + } \color{#FF6800}{ 5808 }$
 Add $- 5776$ and $5808$
$\color{#FF6800}{ 32 }$
Solution search results