Calculator search results

Formula
Calculate the value
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
$\left( \sqrt{ 3 } +1 \right) ^{ 5 } \times \left( \dfrac{ 1 }{ \sqrt{ 3 } -1 } \right) ^{ -5 }$
$32$
Calculate the value
$\left ( \sqrt{ \color{#FF6800}{ 3 } } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) ^ { \color{#FF6800}{ 5 } } \left ( \dfrac { 1 } { \sqrt{ 3 } - 1 } \right ) ^ { - 5 }$
$ $ Calculate power $ $
$\left ( \color{#FF6800}{ 76 } \color{#FF6800}{ + } \color{#FF6800}{ 44 } \sqrt{ \color{#FF6800}{ 3 } } \right ) \left ( \dfrac { 1 } { \sqrt{ 3 } - 1 } \right ) ^ { - 5 }$
$\left ( 76 + 44 \sqrt{ 3 } \right ) \left ( \dfrac { 1 } { \sqrt{ 3 } - 1 } \right ) ^ { - 5 }$
$ $ Find the conjugate irrational number of denominator $ $
$\left ( 76 + 44 \sqrt{ 3 } \right ) \left ( \color{#FF6800}{ \dfrac { 1 } { \sqrt{ 3 } - 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { \sqrt{ 3 } + 1 } { \sqrt{ 3 } + 1 } } \right ) ^ { - 5 }$
$\left ( 76 + 44 \sqrt{ 3 } \right ) \left ( \dfrac { 1 } { \sqrt{ 3 } - 1 } \times \dfrac { \sqrt{ 3 } + 1 } { \sqrt{ 3 } + 1 } \right ) ^ { - 5 }$
$ $ The denominator is multiplied by denominator, and the numerator is multiplied by numerator $ $
$\left ( 76 + 44 \sqrt{ 3 } \right ) \left ( \color{#FF6800}{ \dfrac { 1 \left ( \sqrt{ 3 } + 1 \right ) } { \left ( \sqrt{ 3 } - 1 \right ) \left ( \sqrt{ 3 } + 1 \right ) } } \right ) ^ { - 5 }$
$\left ( 76 + 44 \sqrt{ 3 } \right ) \left ( \dfrac { \color{#FF6800}{ 1 } \left ( \sqrt{ \color{#FF6800}{ 3 } } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) } { \left ( \sqrt{ 3 } - 1 \right ) \left ( \sqrt{ 3 } + 1 \right ) } \right ) ^ { - 5 }$
$ $ Multiply each term in parentheses by $ 1$
$\left ( 76 + 44 \sqrt{ 3 } \right ) \left ( \dfrac { \color{#FF6800}{ 1 } \sqrt{ \color{#FF6800}{ 3 } } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } { \left ( \sqrt{ 3 } - 1 \right ) \left ( \sqrt{ 3 } + 1 \right ) } \right ) ^ { - 5 }$
$\left ( 76 + 44 \sqrt{ 3 } \right ) \left ( \dfrac { 1 \sqrt{ 3 } + 1 } { \left ( \sqrt{ \color{#FF6800}{ 3 } } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \left ( \sqrt{ \color{#FF6800}{ 3 } } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) } \right ) ^ { - 5 }$
$ $ Expand the expression using $ \left(a - b\right)\left(a + b\right) = a^{2} - b^{2}$
$\left ( 76 + 44 \sqrt{ 3 } \right ) \left ( \dfrac { 1 \sqrt{ 3 } + 1 } { \left ( \sqrt{ \color{#FF6800}{ 3 } } \right ) ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 1 } ^ { \color{#FF6800}{ 2 } } } \right ) ^ { - 5 }$
$\left ( 76 + 44 \sqrt{ 3 } \right ) \left ( \dfrac { 1 \sqrt{ 3 } + 1 } { \left ( \sqrt{ \color{#FF6800}{ 3 } } \right ) ^ { \color{#FF6800}{ 2 } } - 1 ^ { 2 } } \right ) ^ { - 5 }$
$ $ Calculate power $ $
$\left ( 76 + 44 \sqrt{ 3 } \right ) \left ( \dfrac { 1 \sqrt{ 3 } + 1 } { \color{#FF6800}{ 3 } - 1 ^ { 2 } } \right ) ^ { - 5 }$
$\left ( 76 + 44 \sqrt{ 3 } \right ) \left ( \dfrac { 1 \sqrt{ 3 } + 1 } { 3 - \color{#FF6800}{ 1 } ^ { \color{#FF6800}{ 2 } } } \right ) ^ { - 5 }$
$ $ Calculate power $ $
$\left ( 76 + 44 \sqrt{ 3 } \right ) \left ( \dfrac { 1 \sqrt{ 3 } + 1 } { 3 - \color{#FF6800}{ 1 } } \right ) ^ { - 5 }$
$\left ( 76 + 44 \sqrt{ 3 } \right ) \left ( \dfrac { \color{#FF6800}{ 1 } \sqrt{ 3 } + 1 } { 3 - 1 } \right ) ^ { - 5 }$
$ $ Multiplying any number by 1 does not change the value $ $
$\left ( 76 + 44 \sqrt{ 3 } \right ) \left ( \dfrac { \sqrt{ 3 } + 1 } { 3 - 1 } \right ) ^ { - 5 }$
$\left ( 76 + 44 \sqrt{ 3 } \right ) \left ( \dfrac { \sqrt{ 3 } + 1 } { \color{#FF6800}{ 3 } \color{#FF6800}{ - } \color{#FF6800}{ 1 } } \right ) ^ { - 5 }$
$ $ Subtract $ 1 $ from $ 3$
$\left ( 76 + 44 \sqrt{ 3 } \right ) \left ( \dfrac { \sqrt{ 3 } + 1 } { \color{#FF6800}{ 2 } } \right ) ^ { - 5 }$
$\left ( 76 + 44 \sqrt{ 3 } \right ) \left ( \dfrac { \sqrt{ 3 } + 1 } { 2 } \right ) ^ { \color{#FF6800}{ - } \color{#FF6800}{ 5 } }$
$ $ If the exponent is negative, change it to a fraction $ $
$\left ( 76 + 44 \sqrt{ 3 } \right ) \times \dfrac { 1 } { \left ( \dfrac { \sqrt{ 3 } + 1 } { 2 } \right ) ^ { 5 } }$
$\left ( 76 + 44 \sqrt{ 3 } \right ) \times \dfrac { 1 } { \left ( \color{#FF6800}{ \dfrac { \sqrt{ 3 } + 1 } { 2 } } \right ) ^ { \color{#FF6800}{ 5 } } }$
$ $ When raising a fraction to the power, raise the numerator and denominator each to the power $ $
$\left ( 76 + 44 \sqrt{ 3 } \right ) \times \dfrac { 1 } { \dfrac { \left ( \sqrt{ \color{#FF6800}{ 3 } } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) ^ { \color{#FF6800}{ 5 } } } { \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 5 } } } }$
$\left ( 76 + 44 \sqrt{ 3 } \right ) \times \color{#FF6800}{ \dfrac { 1 } { \dfrac { \left ( \sqrt{ 3 } + 1 \right ) ^ { 5 } } { 2 ^ { 5 } } } }$
$ $ Calculate the complex fraction $ $
$\left ( 76 + 44 \sqrt{ 3 } \right ) \times \color{#FF6800}{ \dfrac { 2 ^ { 5 } } { \left ( \sqrt{ 3 } + 1 \right ) ^ { 5 } } }$
$\left ( 76 + 44 \sqrt{ 3 } \right ) \times \dfrac { \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 5 } } } { \left ( \sqrt{ 3 } + 1 \right ) ^ { 5 } }$
$ $ Calculate power $ $
$\left ( 76 + 44 \sqrt{ 3 } \right ) \times \dfrac { \color{#FF6800}{ 32 } } { \left ( \sqrt{ 3 } + 1 \right ) ^ { 5 } }$
$\left ( 76 + 44 \sqrt{ 3 } \right ) \times \dfrac { 32 } { \left ( \sqrt{ \color{#FF6800}{ 3 } } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) ^ { \color{#FF6800}{ 5 } } }$
$ $ Calculate power $ $
$\left ( 76 + 44 \sqrt{ 3 } \right ) \times \dfrac { 32 } { \color{#FF6800}{ 76 } \color{#FF6800}{ + } \color{#FF6800}{ 44 } \sqrt{ \color{#FF6800}{ 3 } } }$
$\left ( 76 + 44 \sqrt{ 3 } \right ) \times \dfrac { 32 } { 76 + 44 \sqrt{ 3 } }$
$ $ Find the conjugate irrational number of denominator $ $
$\left ( 76 + 44 \sqrt{ 3 } \right ) \times \color{#FF6800}{ \dfrac { 32 } { 76 + 44 \sqrt{ 3 } } } \times \color{#FF6800}{ \dfrac { 76 - \left ( 44 \sqrt{ 3 } \right ) } { 76 - \left ( 44 \sqrt{ 3 } \right ) } }$
$\left ( 76 + 44 \sqrt{ 3 } \right ) \times \dfrac { 32 } { 76 + 44 \sqrt{ 3 } } \times \dfrac { 76 - \left ( 44 \sqrt{ 3 } \right ) } { 76 - \left ( 44 \sqrt{ 3 } \right ) }$
$ $ The denominator is multiplied by denominator, and the numerator is multiplied by numerator $ $
$\left ( 76 + 44 \sqrt{ 3 } \right ) \times \color{#FF6800}{ \dfrac { 32 \left ( 76 - \left ( 44 \sqrt{ 3 } \right ) \right ) } { \left ( 76 + 44 \sqrt{ 3 } \right ) \left ( 76 - \left ( 44 \sqrt{ 3 } \right ) \right ) } }$
$\left ( 76 + 44 \sqrt{ 3 } \right ) \times \dfrac { \color{#FF6800}{ 32 } \left ( \color{#FF6800}{ 76 } \color{#FF6800}{ - } \left ( \color{#FF6800}{ 44 } \sqrt{ \color{#FF6800}{ 3 } } \right ) \right ) } { \left ( 76 + 44 \sqrt{ 3 } \right ) \left ( 76 - \left ( 44 \sqrt{ 3 } \right ) \right ) }$
$ $ Multiply each term in parentheses by $ 32$
$\left ( 76 + 44 \sqrt{ 3 } \right ) \times \dfrac { \color{#FF6800}{ 32 } \color{#FF6800}{ \times } \color{#FF6800}{ 76 } \color{#FF6800}{ + } \color{#FF6800}{ 32 } \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \left ( \color{#FF6800}{ 44 } \sqrt{ \color{#FF6800}{ 3 } } \right ) \right ) } { \left ( 76 + 44 \sqrt{ 3 } \right ) \left ( 76 - \left ( 44 \sqrt{ 3 } \right ) \right ) }$
$\left ( 76 + 44 \sqrt{ 3 } \right ) \times \dfrac { 32 \times 76 + 32 \times \left ( - \left ( 44 \sqrt{ 3 } \right ) \right ) } { \left ( \color{#FF6800}{ 76 } \color{#FF6800}{ + } \color{#FF6800}{ 44 } \sqrt{ \color{#FF6800}{ 3 } } \right ) \left ( \color{#FF6800}{ 76 } \color{#FF6800}{ - } \left ( \color{#FF6800}{ 44 } \sqrt{ \color{#FF6800}{ 3 } } \right ) \right ) }$
$ $ Expand the expression using $ \left(a - b\right)\left(a + b\right) = a^{2} - b^{2}$
$\left ( 76 + 44 \sqrt{ 3 } \right ) \times \dfrac { 32 \times 76 + 32 \times \left ( - \left ( 44 \sqrt{ 3 } \right ) \right ) } { \color{#FF6800}{ 76 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \left ( \color{#FF6800}{ 44 } \sqrt{ \color{#FF6800}{ 3 } } \right ) ^ { \color{#FF6800}{ 2 } } }$
$\left ( 76 + 44 \sqrt{ 3 } \right ) \times \dfrac { 32 \times 76 + 32 \times \left ( - \left ( 44 \sqrt{ 3 } \right ) \right ) } { \color{#FF6800}{ 76 } ^ { \color{#FF6800}{ 2 } } - \left ( 44 \sqrt{ 3 } \right ) ^ { 2 } }$
$ $ Calculate power $ $
$\left ( 76 + 44 \sqrt{ 3 } \right ) \times \dfrac { 32 \times 76 + 32 \times \left ( - \left ( 44 \sqrt{ 3 } \right ) \right ) } { \color{#FF6800}{ 5776 } - \left ( 44 \sqrt{ 3 } \right ) ^ { 2 } }$
$\left ( 76 + 44 \sqrt{ 3 } \right ) \times \dfrac { 32 \times 76 + 32 \times \left ( - \left ( 44 \sqrt{ 3 } \right ) \right ) } { 5776 - \left ( \color{#FF6800}{ 44 } \sqrt{ \color{#FF6800}{ 3 } } \right ) ^ { \color{#FF6800}{ 2 } } }$
$ $ Calculate power $ $
$\left ( 76 + 44 \sqrt{ 3 } \right ) \times \dfrac { 32 \times 76 + 32 \times \left ( - \left ( 44 \sqrt{ 3 } \right ) \right ) } { 5776 - \color{#FF6800}{ 5808 } }$
$\left ( 76 + 44 \sqrt{ 3 } \right ) \times \dfrac { \color{#FF6800}{ 32 } \color{#FF6800}{ \times } \color{#FF6800}{ 76 } + 32 \times \left ( - \left ( 44 \sqrt{ 3 } \right ) \right ) } { 5776 - 5808 }$
$ $ Multiply $ 32 $ and $ 76$
$\left ( 76 + 44 \sqrt{ 3 } \right ) \times \dfrac { \color{#FF6800}{ 2432 } + 32 \times \left ( - \left ( 44 \sqrt{ 3 } \right ) \right ) } { 5776 - 5808 }$
$\left ( 76 + 44 \sqrt{ 3 } \right ) \times \dfrac { 2432 + 32 \times \left ( \color{#FF6800}{ - } \left ( 44 \sqrt{ 3 } \right ) \right ) } { 5776 - 5808 }$
$ $ Move the (-) sign forward $ $
$\left ( 76 + 44 \sqrt{ 3 } \right ) \times \dfrac { 2432 \color{#FF6800}{ - } 32 \left ( 44 \sqrt{ 3 } \right ) } { 5776 - 5808 }$
$\left ( 76 + 44 \sqrt{ 3 } \right ) \times \dfrac { 2432 \color{#FF6800}{ - } \color{#FF6800}{ 32 } \left ( \color{#FF6800}{ 44 } \sqrt{ \color{#FF6800}{ 3 } } \right ) } { 5776 - 5808 }$
$ $ Get rid of unnecessary parentheses $ $
$\left ( 76 + 44 \sqrt{ 3 } \right ) \times \dfrac { 2432 \color{#FF6800}{ - } \color{#FF6800}{ 32 } \color{#FF6800}{ \times } \color{#FF6800}{ 44 } \sqrt{ \color{#FF6800}{ 3 } } } { 5776 - 5808 }$
$\left ( 76 + 44 \sqrt{ 3 } \right ) \times \dfrac { 2432 \color{#FF6800}{ - } \color{#FF6800}{ 32 } \color{#FF6800}{ \times } \color{#FF6800}{ 44 } \sqrt{ \color{#FF6800}{ 3 } } } { 5776 - 5808 }$
$ $ Simplify the expression $ $
$\left ( 76 + 44 \sqrt{ 3 } \right ) \times \dfrac { 2432 \color{#FF6800}{ - } \color{#FF6800}{ 1408 } \sqrt{ \color{#FF6800}{ 3 } } } { 5776 - 5808 }$
$\left ( 76 + 44 \sqrt{ 3 } \right ) \times \dfrac { 2432 - 1408 \sqrt{ 3 } } { \color{#FF6800}{ 5776 } \color{#FF6800}{ - } \color{#FF6800}{ 5808 } }$
$ $ Subtract $ 5808 $ from $ 5776$
$\left ( 76 + 44 \sqrt{ 3 } \right ) \times \dfrac { 2432 - 1408 \sqrt{ 3 } } { \color{#FF6800}{ - } \color{#FF6800}{ 32 } }$
$\left ( 76 + 44 \sqrt{ 3 } \right ) \times \dfrac { 2432 - 1408 \sqrt{ 3 } } { \color{#FF6800}{ - } \color{#FF6800}{ 32 } }$
$ $ Move the minus sign to the front of the fraction $ $
$\left ( 76 + 44 \sqrt{ 3 } \right ) \times \left ( \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 2432 - 1408 \sqrt{ 3 } } { 32 } } \right )$
$\left ( 76 + 44 \sqrt{ 3 } \right ) \times \left ( - \color{#FF6800}{ \dfrac { 2432 - 1408 \sqrt{ 3 } } { 32 } } \right )$
$ $ Reduce the fraction $ $
$\left ( 76 + 44 \sqrt{ 3 } \right ) \times \left ( - \left ( \color{#FF6800}{ 76 } \color{#FF6800}{ - } \color{#FF6800}{ 44 } \sqrt{ \color{#FF6800}{ 3 } } \right ) \right )$
$\left ( 76 + 44 \sqrt{ 3 } \right ) \times \left ( \color{#FF6800}{ - } \left ( \color{#FF6800}{ 76 } \color{#FF6800}{ - } \color{#FF6800}{ 44 } \sqrt{ \color{#FF6800}{ 3 } } \right ) \right )$
$ $ Change the symbol of each term in parentheses when there is a (-) symbol in front of parentheses $ $
$\left ( 76 + 44 \sqrt{ 3 } \right ) \left ( \color{#FF6800}{ - } \color{#FF6800}{ 76 } \color{#FF6800}{ + } \color{#FF6800}{ 44 } \sqrt{ \color{#FF6800}{ 3 } } \right )$
$\left ( \color{#FF6800}{ 76 } \color{#FF6800}{ + } \color{#FF6800}{ 44 } \sqrt{ \color{#FF6800}{ 3 } } \right ) \left ( \color{#FF6800}{ - } \color{#FF6800}{ 76 } \color{#FF6800}{ + } \color{#FF6800}{ 44 } \sqrt{ \color{#FF6800}{ 3 } } \right )$
$ $ Expand using $ \left(a + b\right)\left(c + d\right) = ac + ad + bc + bd$
$\color{#FF6800}{ 76 } \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 76 } \right ) \color{#FF6800}{ + } \color{#FF6800}{ 76 } \left ( \color{#FF6800}{ 44 } \sqrt{ \color{#FF6800}{ 3 } } \right ) \color{#FF6800}{ + } \left ( \color{#FF6800}{ 44 } \sqrt{ \color{#FF6800}{ 3 } } \right ) \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 76 } \right ) \color{#FF6800}{ + } \left ( \color{#FF6800}{ 44 } \sqrt{ \color{#FF6800}{ 3 } } \right ) \left ( \color{#FF6800}{ 44 } \sqrt{ \color{#FF6800}{ 3 } } \right )$
$\color{#FF6800}{ 76 } \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 76 } \right ) + 76 \left ( 44 \sqrt{ 3 } \right ) + \left ( 44 \sqrt{ 3 } \right ) \times \left ( - 76 \right ) + \left ( 44 \sqrt{ 3 } \right ) \left ( 44 \sqrt{ 3 } \right )$
$ $ Multiply $ 76 $ and $ - 76$
$\color{#FF6800}{ - } \color{#FF6800}{ 5776 } + 76 \left ( 44 \sqrt{ 3 } \right ) + \left ( 44 \sqrt{ 3 } \right ) \times \left ( - 76 \right ) + \left ( 44 \sqrt{ 3 } \right ) \left ( 44 \sqrt{ 3 } \right )$
$- 5776 + \color{#FF6800}{ 76 } \left ( \color{#FF6800}{ 44 } \sqrt{ \color{#FF6800}{ 3 } } \right ) + \left ( 44 \sqrt{ 3 } \right ) \times \left ( - 76 \right ) + \left ( 44 \sqrt{ 3 } \right ) \left ( 44 \sqrt{ 3 } \right )$
$ $ Get rid of unnecessary parentheses $ $
$- 5776 + \color{#FF6800}{ 76 } \color{#FF6800}{ \times } \color{#FF6800}{ 44 } \sqrt{ \color{#FF6800}{ 3 } } + \left ( 44 \sqrt{ 3 } \right ) \times \left ( - 76 \right ) + \left ( 44 \sqrt{ 3 } \right ) \left ( 44 \sqrt{ 3 } \right )$
$- 5776 + \color{#FF6800}{ 76 } \color{#FF6800}{ \times } \color{#FF6800}{ 44 } \sqrt{ \color{#FF6800}{ 3 } } + \left ( 44 \sqrt{ 3 } \right ) \times \left ( - 76 \right ) + \left ( 44 \sqrt{ 3 } \right ) \left ( 44 \sqrt{ 3 } \right )$
$ $ Simplify the expression $ $
$- 5776 + \color{#FF6800}{ 3344 } \sqrt{ \color{#FF6800}{ 3 } } + \left ( 44 \sqrt{ 3 } \right ) \times \left ( - 76 \right ) + \left ( 44 \sqrt{ 3 } \right ) \left ( 44 \sqrt{ 3 } \right )$
$- 5776 + 3344 \sqrt{ 3 } + \left ( \color{#FF6800}{ 44 } \sqrt{ \color{#FF6800}{ 3 } } \right ) \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 76 } \right ) + \left ( 44 \sqrt{ 3 } \right ) \left ( 44 \sqrt{ 3 } \right )$
$ $ Get rid of unnecessary parentheses $ $
$- 5776 + 3344 \sqrt{ 3 } + \color{#FF6800}{ 44 } \sqrt{ \color{#FF6800}{ 3 } } \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 76 } \right ) + \left ( 44 \sqrt{ 3 } \right ) \left ( 44 \sqrt{ 3 } \right )$
$- 5776 + 3344 \sqrt{ 3 } + \color{#FF6800}{ 44 } \sqrt{ \color{#FF6800}{ 3 } } \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 76 } \right ) + \left ( 44 \sqrt{ 3 } \right ) \left ( 44 \sqrt{ 3 } \right )$
$ $ Simplify the expression $ $
$- 5776 + 3344 \sqrt{ 3 } \color{#FF6800}{ - } \color{#FF6800}{ 3344 } \sqrt{ \color{#FF6800}{ 3 } } + \left ( 44 \sqrt{ 3 } \right ) \left ( 44 \sqrt{ 3 } \right )$
$- 5776 + 3344 \sqrt{ 3 } - 3344 \sqrt{ 3 } + \left ( \color{#FF6800}{ 44 } \sqrt{ \color{#FF6800}{ 3 } } \right ) \left ( \color{#FF6800}{ 44 } \sqrt{ \color{#FF6800}{ 3 } } \right )$
$ $ Get rid of unnecessary parentheses $ $
$- 5776 + 3344 \sqrt{ 3 } - 3344 \sqrt{ 3 } + \color{#FF6800}{ 44 } \sqrt{ \color{#FF6800}{ 3 } } \color{#FF6800}{ \times } \color{#FF6800}{ 44 } \sqrt{ \color{#FF6800}{ 3 } }$
$- 5776 + 3344 \sqrt{ 3 } - 3344 \sqrt{ 3 } + \color{#FF6800}{ 44 } \sqrt{ \color{#FF6800}{ 3 } } \color{#FF6800}{ \times } \color{#FF6800}{ 44 } \sqrt{ \color{#FF6800}{ 3 } }$
$ $ Simplify the expression $ $
$- 5776 + 3344 \sqrt{ 3 } - 3344 \sqrt{ 3 } + \color{#FF6800}{ 5808 }$
$- 5776 \color{#FF6800}{ + } \color{#FF6800}{ 3344 } \sqrt{ \color{#FF6800}{ 3 } } \color{#FF6800}{ - } \color{#FF6800}{ 3344 } \sqrt{ \color{#FF6800}{ 3 } } + 5808$
$ $ Eliminate opponent number $ $
$- 5776 + 5808$
$\color{#FF6800}{ - } \color{#FF6800}{ 5776 } \color{#FF6800}{ + } \color{#FF6800}{ 5808 }$
$ $ Add $ - 5776 $ and $ 5808$
$\color{#FF6800}{ 32 }$
Solution search results
search-thumbnail-If the sum of two consecutive 
numbers is $45$ and one number is $X$ 
.This statement in the form of 
equation $1s:$ 
$\left(1$ Point) $\right)$ 
$○5x+1$ $1eft\left(x+1$ $r1gnt\right)=45s$ 
$○sx+1ef\left(x+2$ $r1gnt\right)=145s$ 
$sx+1x=45s$
7th-9th grade
Algebra
search-thumbnail-$s|ef\left(-1n$ $\left($ }\right)^{50}\ $\right)$ \ | | is\ equal\ to\ $S$ 
$s1S$ 
$S-1S$ 
$s2S$ 
$s50s$
7th-9th grade
Other
Have you found the solution you wanted?
Try again
Try more features at QANDA!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo