Symbol

Calculator search results

Formula
Calculate the value
$\left( \sqrt{ 3 } +1 \right) \left( \sqrt{ 3 } +4 \right)$
$7 + 5 \sqrt{ 3 }$
Calculate the value
$\left ( \sqrt{ \color{#FF6800}{ 3 } } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) \left ( \sqrt{ \color{#FF6800}{ 3 } } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \right )$
 Expand using $\left(a + b\right)\left(c + d\right) = ac + ad + bc + bd$
$\sqrt{ \color{#FF6800}{ 3 } } \sqrt{ \color{#FF6800}{ 3 } } \color{#FF6800}{ + } \sqrt{ \color{#FF6800}{ 3 } } \color{#FF6800}{ \times } \color{#FF6800}{ 4 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \sqrt{ \color{#FF6800}{ 3 } } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ \times } \color{#FF6800}{ 4 }$
$\sqrt{ \color{#FF6800}{ 3 } } \sqrt{ 3 } + \sqrt{ 3 } \times 4 + 1 \sqrt{ 3 } + 1 \times 4$
 If the exponent is omitted, the exponent of that term is equal to 1 
$\left ( \sqrt{ \color{#FF6800}{ 3 } } \right ) ^ { \color{#FF6800}{ 1 } } \sqrt{ 3 } + \sqrt{ 3 } \times 4 + 1 \sqrt{ 3 } + 1 \times 4$
$\left ( \sqrt{ 3 } \right ) ^ { 1 } \sqrt{ \color{#FF6800}{ 3 } } + \sqrt{ 3 } \times 4 + 1 \sqrt{ 3 } + 1 \times 4$
 If the exponent is omitted, the exponent of that term is equal to 1 
$\left ( \sqrt{ 3 } \right ) ^ { 1 } \left ( \sqrt{ \color{#FF6800}{ 3 } } \right ) ^ { \color{#FF6800}{ 1 } } + \sqrt{ 3 } \times 4 + 1 \sqrt{ 3 } + 1 \times 4$
$\left ( \sqrt{ \color{#FF6800}{ 3 } } \right ) ^ { \color{#FF6800}{ 1 } } \left ( \sqrt{ \color{#FF6800}{ 3 } } \right ) ^ { \color{#FF6800}{ 1 } } + \sqrt{ 3 } \times 4 + 1 \sqrt{ 3 } + 1 \times 4$
 Add the exponent as the base is the same 
$\left ( \sqrt{ \color{#FF6800}{ 3 } } \right ) ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } + \sqrt{ 3 } \times 4 + 1 \sqrt{ 3 } + 1 \times 4$
$\left ( \sqrt{ 3 } \right ) ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } + \sqrt{ 3 } \times 4 + 1 \sqrt{ 3 } + 1 \times 4$
 Add $1$ and $1$
$\left ( \sqrt{ 3 } \right ) ^ { \color{#FF6800}{ 2 } } + \sqrt{ 3 } \times 4 + 1 \sqrt{ 3 } + 1 \times 4$
$\left ( \sqrt{ \color{#FF6800}{ 3 } } \right ) ^ { \color{#FF6800}{ 2 } } + \sqrt{ 3 } \times 4 + 1 \sqrt{ 3 } + 1 \times 4$
 If you square the radical sign, it will disappear 
$\color{#FF6800}{ 3 } + \sqrt{ 3 } \times 4 + 1 \sqrt{ 3 } + 1 \times 4$
$3 + \sqrt{ \color{#FF6800}{ 3 } } \color{#FF6800}{ \times } \color{#FF6800}{ 4 } + 1 \sqrt{ 3 } + 1 \times 4$
 Simplify the expression 
$3 + \color{#FF6800}{ 4 } \sqrt{ \color{#FF6800}{ 3 } } + 1 \sqrt{ 3 } + 1 \times 4$
$3 + 4 \sqrt{ 3 } + \color{#FF6800}{ 1 } \sqrt{ 3 } + 1 \times 4$
 Multiplying any number by 1 does not change the value 
$3 + 4 \sqrt{ 3 } + \sqrt{ 3 } + 1 \times 4$
$3 + 4 \sqrt{ 3 } + \sqrt{ 3 } + \color{#FF6800}{ 1 } \times 4$
 Multiplying any number by 1 does not change the value 
$3 + 4 \sqrt{ 3 } + \sqrt{ 3 } + \color{#FF6800}{ 4 }$
$\color{#FF6800}{ 3 } + 4 \sqrt{ 3 } + \sqrt{ 3 } \color{#FF6800}{ + } \color{#FF6800}{ 4 }$
 Add $3$ and $4$
$\color{#FF6800}{ 7 } + 4 \sqrt{ 3 } + \sqrt{ 3 }$
$7 + \color{#FF6800}{ 4 } \sqrt{ \color{#FF6800}{ 3 } } \color{#FF6800}{ + } \sqrt{ \color{#FF6800}{ 3 } }$
 Calculate between similar terms 
$7 + \color{#FF6800}{ 5 } \sqrt{ \color{#FF6800}{ 3 } }$
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture