# Calculator search results

Formula
Calculate the value
$\left( \sqrt{ 125 } - \sqrt{ 15 } \right) \div \sqrt{ 5 } + \sqrt{ 75 }$
$5 + 4 \sqrt{ 3 }$
Calculate the value
$\left ( \sqrt{ \color{#FF6800}{ 125 } } - \sqrt{ 15 } \right ) \div \sqrt{ 5 } + \sqrt{ 75 }$
 Organize the part that can be taken out of the radical sign inside the square root symbol 
$\left ( \color{#FF6800}{ 5 } \sqrt{ \color{#FF6800}{ 5 } } - \sqrt{ 15 } \right ) \div \sqrt{ 5 } + \sqrt{ 75 }$
$\left ( \color{#FF6800}{ 5 } \sqrt{ \color{#FF6800}{ 5 } } \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 15 } } \right ) \color{#FF6800}{ \div } \sqrt{ \color{#FF6800}{ 5 } } + \sqrt{ 75 }$
 Present division as a fraction 
$\color{#FF6800}{ \dfrac { 5 \sqrt{ 5 } - \sqrt{ 15 } } { \sqrt{ 5 } } } + \sqrt{ 75 }$
$\color{#FF6800}{ \dfrac { 5 \sqrt{ 5 } - \sqrt{ 15 } } { \sqrt{ 5 } } } + \sqrt{ 75 }$
 Calculate the expression 
$\color{#FF6800}{ \dfrac { 25 - \left ( 5 \sqrt{ 3 } \right ) } { 5 } } + \sqrt{ 75 }$
$\dfrac { 25 \color{#FF6800}{ - } \left ( \color{#FF6800}{ 5 } \sqrt{ \color{#FF6800}{ 3 } } \right ) } { 5 } + \sqrt{ 75 }$
 Get rid of unnecessary parentheses 
$\dfrac { 25 \color{#FF6800}{ - } \color{#FF6800}{ 5 } \sqrt{ \color{#FF6800}{ 3 } } } { 5 } + \sqrt{ 75 }$
$\color{#FF6800}{ \dfrac { 25 - 5 \sqrt{ 3 } } { 5 } } + \sqrt{ 75 }$
 Reduce the fraction 
$\color{#FF6800}{ 5 } \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 3 } } + \sqrt{ 75 }$
$5 - \sqrt{ 3 } + \sqrt{ \color{#FF6800}{ 75 } }$
 Organize the part that can be taken out of the radical sign inside the square root symbol 
$5 - \sqrt{ 3 } + \color{#FF6800}{ 5 } \sqrt{ \color{#FF6800}{ 3 } }$
$5 \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 3 } } \color{#FF6800}{ + } \color{#FF6800}{ 5 } \sqrt{ \color{#FF6800}{ 3 } }$
 Calculate between similar terms 
$5 + \color{#FF6800}{ 4 } \sqrt{ \color{#FF6800}{ 3 } }$
Solution search results