# Calculator search results

Formula
Calculate the value
$\left( \log_{2} {\left( 3 \right)} + \log_{ 4 } {\left( 9 \right)} \right) \left( \log_{ 3 } {\left( 2 \right)} + \log_{ 9 } {\left( 4 \right)} \right)$
$4$
Calculate the value
$\left ( \log _{ 2 } { \left( 3 \right) } + \log _{ 4 } { \left( \color{#FF6800}{ 9 } \right) } \right ) \left ( \log _{ 3 } { \left( 2 \right) } + \log _{ 9 } { \left( 4 \right) } \right )$
 Write the number in exponential form with base $3$
$\left ( \log _{ 2 } { \left( 3 \right) } + \log _{ 4 } { \left( \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } } \right) } \right ) \left ( \log _{ 3 } { \left( 2 \right) } + \log _{ 9 } { \left( 4 \right) } \right )$
$\left ( \log _{ 2 } { \left( 3 \right) } + \log _{ \color{#FF6800}{ 4 } } { \left( 3 ^ { 2 } \right) } \right ) \left ( \log _{ 3 } { \left( 2 \right) } + \log _{ 9 } { \left( 4 \right) } \right )$
 Write the number in exponential form with base $2$
$\left ( \log _{ 2 } { \left( 3 \right) } + \log _{ \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } } { \left( 3 ^ { 2 } \right) } \right ) \left ( \log _{ 3 } { \left( 2 \right) } + \log _{ 9 } { \left( 4 \right) } \right )$
$\left ( \log _{ 2 } { \left( 3 \right) } + \log _{ \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } } { \left( \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } } \right) } \right ) \left ( \log _{ 3 } { \left( 2 \right) } + \log _{ 9 } { \left( 4 \right) } \right )$
 Simplify the expression using $\log_{a^{y}}{b^{x}}=\dfrac{x}{y}\times\log_{a}{b}$
$\left ( \log _{ 2 } { \left( 3 \right) } + \color{#FF6800}{ \dfrac { 2 } { 2 } } \log _{ \color{#FF6800}{ 2 } } { \left( \color{#FF6800}{ 3 } \right) } \right ) \left ( \log _{ 3 } { \left( 2 \right) } + \log _{ 9 } { \left( 4 \right) } \right )$
$\left ( \log _{ 2 } { \left( 3 \right) } + \color{#FF6800}{ \dfrac { 2 } { 2 } } \log _{ 2 } { \left( 3 \right) } \right ) \left ( \log _{ 3 } { \left( 2 \right) } + \log _{ 9 } { \left( 4 \right) } \right )$
 Reduce the fraction 
$\left ( \log _{ 2 } { \left( 3 \right) } + \color{#FF6800}{ 1 } \log _{ 2 } { \left( 3 \right) } \right ) \left ( \log _{ 3 } { \left( 2 \right) } + \log _{ 9 } { \left( 4 \right) } \right )$
$\left ( \log _{ 2 } { \left( 3 \right) } + \color{#FF6800}{ 1 } \log _{ 2 } { \left( 3 \right) } \right ) \left ( \log _{ 3 } { \left( 2 \right) } + \log _{ 9 } { \left( 4 \right) } \right )$
 Multiplying any number by 1 does not change the value 
$\left ( \log _{ 2 } { \left( 3 \right) } + \log _{ 2 } { \left( 3 \right) } \right ) \left ( \log _{ 3 } { \left( 2 \right) } + \log _{ 9 } { \left( 4 \right) } \right )$
$\left ( \log _{ \color{#FF6800}{ 2 } } { \left( \color{#FF6800}{ 3 } \right) } \color{#FF6800}{ + } \log _{ \color{#FF6800}{ 2 } } { \left( \color{#FF6800}{ 3 } \right) } \right ) \left ( \log _{ 3 } { \left( 2 \right) } + \log _{ 9 } { \left( 4 \right) } \right )$
 Calculate between similar terms 
$\color{#FF6800}{ 2 } \log _{ \color{#FF6800}{ 2 } } { \left( \color{#FF6800}{ 3 } \right) } \left ( \log _{ 3 } { \left( 2 \right) } + \log _{ 9 } { \left( 4 \right) } \right )$
$\color{#FF6800}{ 2 } \log _{ \color{#FF6800}{ 2 } } { \left( \color{#FF6800}{ 3 } \right) } \left ( \log _{ \color{#FF6800}{ 3 } } { \left( \color{#FF6800}{ 2 } \right) } \color{#FF6800}{ + } \log _{ \color{#FF6800}{ 9 } } { \left( \color{#FF6800}{ 4 } \right) } \right )$
 Expand the expression to calculate the value 
$\color{#FF6800}{ 4 }$
Solution search results