Symbol

# Calculator search results

Formula
Calculate the value
$\left( \dfrac{ 1 }{ 3 } \right) ^{ -1 }$
$3$
Calculate the value
$\left ( \color{#FF6800}{ \dfrac { 1 } { 3 } } \right ) ^ { \color{#FF6800}{ - } \color{#FF6800}{ 1 } }$
 When raising a fraction to the power, raise the numerator and denominator each to the power 
$\dfrac { \color{#FF6800}{ 1 } ^ { \color{#FF6800}{ - } \color{#FF6800}{ 1 } } } { \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ - } \color{#FF6800}{ 1 } } }$
$\dfrac { 1 ^ { \color{#FF6800}{ - } \color{#FF6800}{ 1 } } } { 3 ^ { - 1 } }$
 If the exponent is negative, change it to a fraction 
$\dfrac { \dfrac { 1 } { 1 ^ { 1 } } } { 3 ^ { - 1 } }$
$\color{#FF6800}{ \dfrac { \dfrac { 1 } { 1 ^ { 1 } } } { 3 ^ { - 1 } } }$
 Calculate the complex fraction 
$\color{#FF6800}{ \dfrac { 1 } { 1 ^ { 1 } \times 3 ^ { - 1 } } }$
$\dfrac { 1 } { 1 ^ { \color{#FF6800}{ 1 } } \times 3 ^ { - 1 } }$
 If the exponent is 1, get rid of it as it is unnecessary 
$\dfrac { 1 } { 1 \times 3 ^ { - 1 } }$
$\dfrac { 1 } { \color{#FF6800}{ 1 } \times 3 ^ { - 1 } }$
 Multiplying any number by 1 does not change the value 
$\dfrac { 1 } { 3 ^ { - 1 } }$
$\dfrac { 1 } { 3 ^ { \color{#FF6800}{ - } \color{#FF6800}{ 1 } } }$
 If the exponent is negative, change it to a fraction 
$\dfrac { 1 } { \dfrac { 1 } { 3 ^ { 1 } } }$
$\color{#FF6800}{ \dfrac { 1 } { \dfrac { 1 } { 3 ^ { 1 } } } }$
 Calculate the complex fraction 
$\color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } }$
$3 ^ { \color{#FF6800}{ 1 } }$
 If the exponent is 1, get rid of it as it is unnecessary 
$3$
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture