Symbol

# Calculator search results

Formula
Calculate the value
$\left( \dfrac{ \sqrt{ 2 } }{ 1+i } \right) ^{ 2 }$
$- i$
Calculate the value
$\left ( \color{#FF6800}{ \dfrac { \sqrt{ 2 } } { 1 + i } } \right ) ^ { 2 }$
 Calculate the rationalization of the complex number 
$\left ( \color{#FF6800}{ \dfrac { \sqrt{ 2 } - \sqrt{ 2 } i } { 2 } } \right ) ^ { 2 }$
$\left ( \color{#FF6800}{ \dfrac { \sqrt{ 2 } - \sqrt{ 2 } i } { 2 } } \right ) ^ { \color{#FF6800}{ 2 } }$
 When raising a fraction to the power, raise the numerator and denominator each to the power 
$\dfrac { \left ( \sqrt{ \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 2 } } \color{#FF6800}{ i } \right ) ^ { \color{#FF6800}{ 2 } } } { \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } }$
$\dfrac { \left ( \sqrt{ \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 2 } } \color{#FF6800}{ i } \right ) ^ { \color{#FF6800}{ 2 } } } { 2 ^ { 2 } }$
 Expand the square of a binomial including imaginary numbers 
$\dfrac { \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ i } } { 2 ^ { 2 } }$
$\dfrac { - 4 i } { \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } }$
 Calculate power 
$\dfrac { - 4 i } { \color{#FF6800}{ 4 } }$
$\color{#FF6800}{ \dfrac { - 4 i } { 4 } }$
 Reduce the fraction 
$\color{#FF6800}{ - } \color{#FF6800}{ 1 } \color{#FF6800}{ i }$
$\color{#FF6800}{ - } \color{#FF6800}{ 1 } i$
 Multiplying any number by 1 does not change the value 
$- i$
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture