# Calculator search results

Formula
Calculate the integral
$\int{ xe ^{ x ^{ 2 } } }d{ x }$
$\dfrac { 1 } { 2 } e ^ { x ^ { 2 } } + C$
Calculate the indefinite integral.
$\displaystyle\int { \color{#FF6800}{ x } \color{#FF6800}{ e } ^ { \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } } } d { \color{#FF6800}{ x } }$
 Substitute with $u = x ^ { 2 }$ and calculate the integral 
$\left [ \color{#FF6800}{ \frac { 1 } { 2 } } \displaystyle\int { \color{#FF6800}{ e } ^ { \color{#FF6800}{ u } } } d { \color{#FF6800}{ u } } \right ] _ { \color{#FF6800}{ u } = \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } }$
$\left [ \frac { 1 } { 2 } \displaystyle\int { \color{#FF6800}{ e } ^ { \color{#FF6800}{ u } } } d { \color{#FF6800}{ u } } \right ] _ { u = x ^ { 2 } }$
 Calculate the integral using the formula of $\int e^{x} dx = e^{x}$
$\left [ \frac { 1 } { 2 } \color{#FF6800}{ e } ^ { \color{#FF6800}{ u } } \right ] _ { u = x ^ { 2 } }$
$\left [ \color{#FF6800}{ \frac { 1 } { 2 } } \color{#FF6800}{ e } ^ { \color{#FF6800}{ u } } \right ] _ { \color{#FF6800}{ u } = \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } }$
 Return the substituted value 
$\color{#FF6800}{ \dfrac { 1 } { 2 } } \color{#FF6800}{ e } ^ { \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } }$
$\color{#FF6800}{ \dfrac { 1 } { 2 } } \color{#FF6800}{ e } ^ { \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } }$
 Add the integral constant $C$ . 
$\color{#FF6800}{ \dfrac { 1 } { 2 } } \color{#FF6800}{ e } ^ { \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } } \color{#FF6800}{ + } \color{#FF6800}{ C }$
Solution search results
Have you found the solution you wanted?
Try again
Try more features at QANDA!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture