qanda-logo
apple logogoogle play logo

Calculator search results

Formula
Calculate the integral
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
$\int{ \sqrt{ x } }d{ x }$
$2 \times \dfrac { 1 } { 3 } \sqrt{ x ^ { 3 } }$
Calculate the integral
$\displaystyle\int { \sqrt{ \color{#FF6800}{ x } } } d { \color{#FF6800}{ x } }$
$ $ Substitute with $ u = \sqrt{ x } $ and calculate the integral $ $
$\left [ \color{#FF6800}{ 2 } \displaystyle\int { \color{#FF6800}{ u } ^ { \color{#FF6800}{ 2 } } } d { \color{#FF6800}{ u } } \right ] _ { \color{#FF6800}{ u } = \sqrt{ \color{#FF6800}{ x } } }$
$\left [ 2 \displaystyle\int { \color{#FF6800}{ u } ^ { \color{#FF6800}{ 2 } } } d { \color{#FF6800}{ u } } \right ] _ { u = \sqrt{ x } }$
$ $ Calculate the integral using the formula of $ \int{x^{n}}dx = \frac{x^{n+1}}{n+1}$
$\left [ 2 \times \color{#FF6800}{ \frac { 1 } { 2 + 1 } } \color{#FF6800}{ u } ^ { \color{#FF6800}{ 2 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } \right ] _ { u = \sqrt{ x } }$
$\left [ 2 \times \frac { 1 } { \color{#FF6800}{ 2 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } u ^ { 2 + 1 } \right ] _ { u = \sqrt{ x } }$
$ $ Add $ 2 $ and $ 1$
$\left [ 2 \times \frac { 1 } { \color{#FF6800}{ 3 } } u ^ { 2 + 1 } \right ] _ { u = \sqrt{ x } }$
$\left [ 2 \times \frac { 1 } { 3 } u ^ { \color{#FF6800}{ 2 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } \right ] _ { u = \sqrt{ x } }$
$ $ Add $ 2 $ and $ 1$
$\left [ 2 \times \frac { 1 } { 3 } u ^ { \color{#FF6800}{ 3 } } \right ] _ { u = \sqrt{ x } }$
$\left [ \color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ \frac { 1 } { 3 } } \color{#FF6800}{ u } ^ { \color{#FF6800}{ 3 } } \right ] _ { \color{#FF6800}{ u } = \sqrt{ \color{#FF6800}{ x } } }$
$ $ Return the substituted value $ $
$\color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 1 } { 3 } } \left ( \sqrt{ \color{#FF6800}{ x } } \right ) ^ { \color{#FF6800}{ 3 } }$
$\color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 1 } { 3 } } \left ( \sqrt{ \color{#FF6800}{ x } } \right ) ^ { \color{#FF6800}{ 3 } }$
$ $ Simplify the expression $ $
$\color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 1 } { 3 } } \sqrt{ \color{#FF6800}{ x } ^ { \color{#FF6800}{ 3 } } }$
Solution search results
search-thumbnail-The rationalizing factor of \sqrt{23} is 
$°$ $Options^{°}$ $0$ 
A 24 
23 
C \sqrt{23} 
D None of these
7th-9th grade
Other
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo