Calculator search results

Formula
Calculate the integral
$\int{ \sqrt[ 4 ]{ x } }d{ x }$
$4 \times \dfrac { 1 } { 5 } \sqrt[ 4 ]{ x ^ { 5 } }$
Calculate the integral
$\displaystyle\int { \sqrt[ \color{#FF6800}{ 4 } ]{ \color{#FF6800}{ x } } } d { \color{#FF6800}{ x } }$
 Substitute with $u = \sqrt[ 4 ]{ x }$ and calculate the integral 
$\left [ \color{#FF6800}{ 4 } \displaystyle\int { \color{#FF6800}{ u } ^ { \color{#FF6800}{ 4 } } } d { \color{#FF6800}{ u } } \right ] _ { \color{#FF6800}{ u } = \sqrt[ \color{#FF6800}{ 4 } ]{ \color{#FF6800}{ x } } }$
$\left [ 4 \displaystyle\int { \color{#FF6800}{ u } ^ { \color{#FF6800}{ 4 } } } d { \color{#FF6800}{ u } } \right ] _ { u = \sqrt[ 4 ]{ x } }$
 Calculate the integral using the formula of $\int{x^{n}}dx = \frac{x^{n+1}}{n+1}$
$\left [ 4 \times \color{#FF6800}{ \frac { 1 } { 4 + 1 } } \color{#FF6800}{ u } ^ { \color{#FF6800}{ 4 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } \right ] _ { u = \sqrt[ 4 ]{ x } }$
$\left [ 4 \times \frac { 1 } { \color{#FF6800}{ 4 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } u ^ { 4 + 1 } \right ] _ { u = \sqrt[ 4 ]{ x } }$
 Add $4$ and $1$
$\left [ 4 \times \frac { 1 } { \color{#FF6800}{ 5 } } u ^ { 4 + 1 } \right ] _ { u = \sqrt[ 4 ]{ x } }$
$\left [ 4 \times \frac { 1 } { 5 } u ^ { \color{#FF6800}{ 4 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } \right ] _ { u = \sqrt[ 4 ]{ x } }$
 Add $4$ and $1$
$\left [ 4 \times \frac { 1 } { 5 } u ^ { \color{#FF6800}{ 5 } } \right ] _ { u = \sqrt[ 4 ]{ x } }$
$\left [ \color{#FF6800}{ 4 } \color{#FF6800}{ \times } \color{#FF6800}{ \frac { 1 } { 5 } } \color{#FF6800}{ u } ^ { \color{#FF6800}{ 5 } } \right ] _ { \color{#FF6800}{ u } = \sqrt[ \color{#FF6800}{ 4 } ]{ \color{#FF6800}{ x } } }$
 Return the substituted value 
$\color{#FF6800}{ 4 } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 1 } { 5 } } \left ( \sqrt[ \color{#FF6800}{ 4 } ]{ \color{#FF6800}{ x } } \right ) ^ { \color{#FF6800}{ 5 } }$
$\color{#FF6800}{ 4 } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 1 } { 5 } } \left ( \sqrt[ \color{#FF6800}{ 4 } ]{ \color{#FF6800}{ x } } \right ) ^ { \color{#FF6800}{ 5 } }$
 Simplify the expression 
$\color{#FF6800}{ 4 } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 1 } { 5 } } \sqrt[ \color{#FF6800}{ 4 } ]{ \color{#FF6800}{ x } ^ { \color{#FF6800}{ 5 } } }$
Solution search results