qanda-logo
search-icon
Symbol
apple-logo
google-play-logo

Calculator search results

Formula
Calculate the integral
Answer
circle-check-icon
expand-arrow-icon
$\int{ \ln{\left( x \right)} }d{ x }$
$x \ln { \left( x \right) } - x$
Calculate the integral
$\displaystyle\int { \ln { \left( \color{#FF6800}{ x } \right) } } d { \color{#FF6800}{ x } }$
$ $ Calculate the integral using partial integration $ $
$\color{#FF6800}{ x } \ln { \left( \color{#FF6800}{ x } \right) } \color{#FF6800}{ - } \displaystyle\int { \color{#FF6800}{ 1 } } d { \color{#FF6800}{ x } }$
$x \ln { \left( x \right) } - \displaystyle\int { \color{#FF6800}{ 1 } } d { \color{#FF6800}{ x } }$
$ $ The indefinite integral of $ 1 $ is $ x $ . $ $
$x \ln { \left( x \right) } - \color{#FF6800}{ x }$
Solution search results
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple-logo
google-play-logo