Calculator search results

Formula
Calculate the integral
Answer
circle-check-icon
expand-arrow-icon
$\int{ \ln{\left( x \right)} }d{ x }$
$x \ln { \left( x \right) } - x + C$
Calculate the indefinite integral.
$\displaystyle\int { \ln { \left( \color{#FF6800}{ x } \right) } } d { \color{#FF6800}{ x } }$
$ $ Calculate the integral using partial integration $ $
$\color{#FF6800}{ x } \ln { \left( \color{#FF6800}{ x } \right) } \color{#FF6800}{ - } \displaystyle\int { \color{#FF6800}{ 1 } } d { \color{#FF6800}{ x } }$
$x \ln { \left( x \right) } - \displaystyle\int { \color{#FF6800}{ 1 } } d { \color{#FF6800}{ x } }$
$ $ The indefinite integral of $ 1 $ is $ x $ . $ $
$x \ln { \left( x \right) } - \color{#FF6800}{ x }$
$\color{#FF6800}{ x } \ln { \left( \color{#FF6800}{ x } \right) } \color{#FF6800}{ - } \color{#FF6800}{ x }$
$ $ Add the integral constant $ C $ . $ $
$\left ( \color{#FF6800}{ x } \ln { \left( \color{#FF6800}{ x } \right) } \color{#FF6800}{ - } \color{#FF6800}{ x } \right ) \color{#FF6800}{ + } \color{#FF6800}{ C }$
$\left ( \color{#FF6800}{ x } \ln { \left( \color{#FF6800}{ x } \right) } \color{#FF6800}{ - } \color{#FF6800}{ x } \right ) \color{#FF6800}{ + } \color{#FF6800}{ C }$
$ $ Get rid of unnecessary parentheses $ $
$\color{#FF6800}{ x } \ln { \left( \color{#FF6800}{ x } \right) } \color{#FF6800}{ - } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ C }$
Solution search results
search-thumbnail-If the sum of two consecutive 
numbers is $45$ and one number is $X$ 
.This statement in the form of 
equation $1s:$ 
$\left(1$ Point) $\right)$ 
$○5x+1$ $1eft\left(x+1$ $r1gnt\right)=45s$ 
$○sx+1ef\left(x+2$ $r1gnt\right)=145s$ 
$sx+1x=45s$
7th-9th grade
Algebra
search-thumbnail-$s|ef\left(-1n$ $\left($ }\right)^{50}\ $\right)$ \ | | is\ equal\ to\ $S$ 
$s1S$ 
$S-1S$ 
$s2S$ 
$s50s$
7th-9th grade
Other
Have you found the solution you wanted?
Try again
Try more features at QANDA!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo