qanda-logo
apple logogoogle play logo

Calculator search results

Formula
Calculate the integral
Answer
circle-check-icon
expand-arrow-icon
$\int{ \left( 4x+2 \right) }d{ x }$
$2 x ^ { 2 } + 2 x$
Calculate the integral
$\displaystyle\int { \color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 2 } } d { \color{#FF6800}{ x } }$
$ $ It is $ \int f_1(x) + f_2(x) + \cdots + f_n(x) dx = \int f_1(x) dx + \int f_2(x) dx + \cdots + \int f_n(x) dx$
$\displaystyle\int { \color{#FF6800}{ 4 } \color{#FF6800}{ x } } d { \color{#FF6800}{ x } } \color{#FF6800}{ + } \displaystyle\int { \color{#FF6800}{ 2 } } d { \color{#FF6800}{ x } }$
$\displaystyle\int { \color{#FF6800}{ 4 } \color{#FF6800}{ x } } d { \color{#FF6800}{ x } } + \displaystyle\int { 2 } d { x }$
$ $ It is $ \int c f(x) dx = c \int f(x) dx$
$\color{#FF6800}{ 4 } \displaystyle\int { \color{#FF6800}{ x } } d { \color{#FF6800}{ x } } + \displaystyle\int { 2 } d { x }$
$4 \displaystyle\int { \color{#FF6800}{ x } } d { \color{#FF6800}{ x } } + \displaystyle\int { 2 } d { x }$
$ $ Calculate the integral using the formula of $ \int{x^{n}}dx = \frac{x^{n+1}}{n+1}$
$4 \times \color{#FF6800}{ \dfrac { 1 } { 1 + 1 } } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } + \displaystyle\int { 2 } d { x }$
$4 \times \dfrac { 1 } { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } x ^ { 1 + 1 } + \displaystyle\int { 2 } d { x }$
$ $ Add $ 1 $ and $ 1$
$4 \times \dfrac { 1 } { \color{#FF6800}{ 2 } } x ^ { 1 + 1 } + \displaystyle\int { 2 } d { x }$
$4 \times \dfrac { 1 } { 2 } x ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } + \displaystyle\int { 2 } d { x }$
$ $ Add $ 1 $ and $ 1$
$4 \times \dfrac { 1 } { 2 } x ^ { \color{#FF6800}{ 2 } } + \displaystyle\int { 2 } d { x }$
$4 \times \dfrac { 1 } { 2 } x ^ { 2 } + \displaystyle\int { \color{#FF6800}{ 2 } } d { \color{#FF6800}{ x } }$
$ $ It is $ \int c f(x) dx = c \int f(x) dx$
$4 \times \dfrac { 1 } { 2 } x ^ { 2 } + \color{#FF6800}{ 2 } \displaystyle\int { \color{#FF6800}{ 1 } } d { \color{#FF6800}{ x } }$
$4 \times \dfrac { 1 } { 2 } x ^ { 2 } + 2 \displaystyle\int { \color{#FF6800}{ 1 } } d { \color{#FF6800}{ x } }$
$ $ The indefinite integral of $ 1 $ is $ x $ . $ $
$4 \times \dfrac { 1 } { 2 } x ^ { 2 } + 2 \color{#FF6800}{ x }$
$\color{#FF6800}{ 4 } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 1 } { 2 } } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ x }$
$ $ Simplify the expression $ $
$\color{#FF6800}{ 2 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ x }$
Solution search results
search-thumbnail-If the sum of two consecutive 
numbers is $45$ and one number is $X$ 
.This statement in the form of 
equation $1s:$ 
$\left(1$ Point) $\right)$ 
$○5x+1$ $1eft\left(x+1$ $r1gnt\right)=45s$ 
$○sx+1ef\left(x+2$ $r1gnt\right)=145s$ 
$sx+1x=45s$
7th-9th grade
Algebra
search-thumbnail-$s|ef\left(-1n$ $\left($ }\right)^{50}\ $\right)$ \ | | is\ equal\ to\ $S$ 
$s1S$ 
$S-1S$ 
$s2S$ 
$s50s$
7th-9th grade
Other
search-thumbnail-Given the set of ordered pairs $\left(\left(-7.0\right),\left(-6,5\right),\left(-5,-3\right),\left(-1,2\right)$ $\left(1,6\right),\left(2,-2\right)$ $\left(5,3\right)\left(7,-8\right)\right)$ 
Find f(7)fAleft(7\right) 
O a 
O b -8 
6. 
$5$
7th-9th grade
Algebra
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo