qanda-logo
apple logogoogle play logo

Calculator search results

Formula
Calculate the integral
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
$\int{ \left( \sqrt{ x } - \dfrac{ 1 }{ \sqrt{ x } } \right) }d{ x }$
$2 \times \dfrac { 1 } { 3 } \sqrt{ x ^ { 3 } } - 2 \sqrt{ x }$
Calculate the integral
$\displaystyle\int { \sqrt{ \color{#FF6800}{ x } } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 1 } { \sqrt{ x } } } } d { \color{#FF6800}{ x } }$
$ $ It is $ \int f_1(x) + f_2(x) + \cdots + f_n(x) dx = \int f_1(x) dx + \int f_2(x) dx + \cdots + \int f_n(x) dx$
$\displaystyle\int { \sqrt{ \color{#FF6800}{ x } } } d { \color{#FF6800}{ x } } \color{#FF6800}{ - } \displaystyle\int { \color{#FF6800}{ \dfrac { 1 } { \sqrt{ x } } } } d { \color{#FF6800}{ x } }$
$\displaystyle\int { \sqrt{ \color{#FF6800}{ x } } } d { \color{#FF6800}{ x } } - \displaystyle\int { \dfrac { 1 } { \sqrt{ x } } } d { x }$
$ $ Substitute with $ u = \sqrt{ x } $ and calculate the integral $ $
$\left [ \color{#FF6800}{ 2 } \displaystyle\int { \color{#FF6800}{ u } ^ { \color{#FF6800}{ 2 } } } d { \color{#FF6800}{ u } } \right ] _ { \color{#FF6800}{ u } = \sqrt{ \color{#FF6800}{ x } } } - \displaystyle\int { \dfrac { 1 } { \sqrt{ x } } } d { x }$
$\left [ 2 \displaystyle\int { \color{#FF6800}{ u } ^ { \color{#FF6800}{ 2 } } } d { \color{#FF6800}{ u } } \right ] _ { u = \sqrt{ x } } - \displaystyle\int { \dfrac { 1 } { \sqrt{ x } } } d { x }$
$ $ Calculate the integral using the formula of $ \int{x^{n}}dx = \frac{x^{n+1}}{n+1}$
$\left [ 2 \times \color{#FF6800}{ \frac { 1 } { 2 + 1 } } \color{#FF6800}{ u } ^ { \color{#FF6800}{ 2 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } \right ] _ { u = \sqrt{ x } } - \displaystyle\int { \dfrac { 1 } { \sqrt{ x } } } d { x }$
$\left [ 2 \times \frac { 1 } { \color{#FF6800}{ 2 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } u ^ { 2 + 1 } \right ] _ { u = \sqrt{ x } } - \displaystyle\int { \dfrac { 1 } { \sqrt{ x } } } d { x }$
$ $ Add $ 2 $ and $ 1$
$\left [ 2 \times \frac { 1 } { \color{#FF6800}{ 3 } } u ^ { 2 + 1 } \right ] _ { u = \sqrt{ x } } - \displaystyle\int { \dfrac { 1 } { \sqrt{ x } } } d { x }$
$\left [ 2 \times \frac { 1 } { 3 } u ^ { \color{#FF6800}{ 2 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } \right ] _ { u = \sqrt{ x } } - \displaystyle\int { \dfrac { 1 } { \sqrt{ x } } } d { x }$
$ $ Add $ 2 $ and $ 1$
$\left [ 2 \times \frac { 1 } { 3 } u ^ { \color{#FF6800}{ 3 } } \right ] _ { u = \sqrt{ x } } - \displaystyle\int { \dfrac { 1 } { \sqrt{ x } } } d { x }$
$\left [ \color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ \frac { 1 } { 3 } } \color{#FF6800}{ u } ^ { \color{#FF6800}{ 3 } } \right ] _ { \color{#FF6800}{ u } = \sqrt{ \color{#FF6800}{ x } } } - \displaystyle\int { \dfrac { 1 } { \sqrt{ x } } } d { x }$
$ $ Return the substituted value $ $
$\color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 1 } { 3 } } \left ( \sqrt{ \color{#FF6800}{ x } } \right ) ^ { \color{#FF6800}{ 3 } } - \displaystyle\int { \dfrac { 1 } { \sqrt{ x } } } d { x }$
$2 \times \dfrac { 1 } { 3 } \left ( \sqrt{ x } \right ) ^ { 3 } - \displaystyle\int { \color{#FF6800}{ \dfrac { 1 } { \sqrt{ x } } } } d { \color{#FF6800}{ x } }$
$ $ Substitute with $ u = \sqrt{ x } $ and calculate the integral $ $
$2 \times \dfrac { 1 } { 3 } \left ( \sqrt{ x } \right ) ^ { 3 } - \left [ \color{#FF6800}{ 2 } \displaystyle\int { \color{#FF6800}{ 1 } } d { \color{#FF6800}{ u } } \right ] _ { \color{#FF6800}{ u } = \sqrt{ \color{#FF6800}{ x } } }$
$2 \times \dfrac { 1 } { 3 } \left ( \sqrt{ x } \right ) ^ { 3 } - \left [ 2 \displaystyle\int { \color{#FF6800}{ 1 } } d { \color{#FF6800}{ u } } \right ] _ { u = \sqrt{ x } }$
$ $ The indefinite integral of $ 1 $ is $ x $ . $ $
$2 \times \dfrac { 1 } { 3 } \left ( \sqrt{ x } \right ) ^ { 3 } - \left [ 2 \color{#FF6800}{ u } \right ] _ { u = \sqrt{ x } }$
$2 \times \dfrac { 1 } { 3 } \left ( \sqrt{ x } \right ) ^ { 3 } - \left [ \color{#FF6800}{ 2 } \color{#FF6800}{ u } \right ] _ { \color{#FF6800}{ u } = \sqrt{ \color{#FF6800}{ x } } }$
$ $ Return the substituted value $ $
$2 \times \dfrac { 1 } { 3 } \left ( \sqrt{ x } \right ) ^ { 3 } - \left ( \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ x } } \right )$
$\color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 1 } { 3 } } \left ( \sqrt{ \color{#FF6800}{ x } } \right ) ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ - } \left ( \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ x } } \right )$
$ $ Simplify the expression $ $
$\color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 1 } { 3 } } \sqrt{ \color{#FF6800}{ x } ^ { \color{#FF6800}{ 3 } } } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ x } }$
Solution search results
search-thumbnail-If the sum of two consecutive 
numbers is $45$ and one number is $X$ 
.This statement in the form of 
equation $1s:$ 
$\left(1$ Point) $\right)$ 
$○5x+1$ $1eft\left(x+1$ $r1gnt\right)=45s$ 
$○sx+1ef\left(x+2$ $r1gnt\right)=145s$ 
$sx+1x=45s$
7th-9th grade
Algebra
search-thumbnail-$s|ef\left(-1n$ $\left($ }\right)^{50}\ $\right)$ \ | | is\ equal\ to\ $S$ 
$s1S$ 
$S-1S$ 
$s2S$ 
$s50s$
7th-9th grade
Other
search-thumbnail-Which of the following rational numbers are 
equivalent? 
$0Ptionsy$ 
A \frac{5}{6}, \frac{30}{36} 
B $s\sqrt{rac\left(} -2\right)\left(3\right)\sqrt{1rac} \sqrt{4\right)16\right)4} $ 
C $s\sqrt{11aC\left(} -4\right)1-7b,\sqrt{1rac\left(16\sqrt{35\right)9} } $ 
D \frac{1}{2},\frac{3}{8}
7th-9th grade
Other
search-thumbnail-The rationalizing factor of \sqrt{23} is 
$°$ $Options^{°}$ $0$ 
A 24 
23 
C \sqrt{23} 
D None of these
7th-9th grade
Other
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo