qanda-logo
apple logogoogle play logo

Calculator search results

Formula
Calculate the integral
Answer
circle-check-icon
expand-arrow-icon
$\int{ \dfrac{ x }{ x ^{ 2 } +1 } }d{ x }$
$\dfrac { 1 } { 2 } \ln { \left( | x ^ { 2 } + 1 | \right) }$
Calculate the integral
$\displaystyle\int { \color{#FF6800}{ \dfrac { x } { x ^ { 2 } + 1 } } } d { \color{#FF6800}{ x } }$
$ $ Use synthetic division to divide the numerator by the derivative of the denominator. Subtract the numerators then solve the integral. $ $
$\color{#FF6800}{ \dfrac { 1 } { 2 } } \ln { \left( | \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 1 } | \right) }$
Solution search results
search-thumbnail-
Which of the following is improper fraction. 
$1\right)\dfrac {x} {x^{6+1}}$ $2\right)$ $\dfrac {x^{2}} {x^{3}+1}$ $3\right)$ $\dfrac {x} {x+1}$ $4\right)\dfrac {x} {x^{2}+}$ $\dfrac {x} {x^{2}+1}$
10th-13th grade
Other
search-thumbnail-
Which of the following is improper fraction. 
$1\right)\dfrac {x} {x^{6+1}}$ $2\right)$ $\dfrac {x^{2}} {x^{3}+1}$ $3\right)$ $\dfrac {x} {x+1}$ $4\right)\dfrac {x} {x^{2}+}$ $\dfrac {x} {x^{2}+1}$
10th-13th grade
Other
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo