qanda-logo
apple logogoogle play logo

Calculator search results

Formula
Calculate the differentiation
Answer
circle-check-icon
expand-arrow-icon
$\dfrac{d}{dx}{ \left(3x ^{ 2 } -5x \right) }$
$6 x - 5$
Calculate the differentiation
$\dfrac {d } {d \color{#FF6800}{ x } } {\left( \color{#FF6800}{ 3 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ x } \right)}$
$ $ It is $ \frac{d^{n}}{dx^{n}}{(f_1(x) + f_2(x) + ... + f_k(x))} = \frac{d^{n}}{dx^{n}}{f_1(x)} + \frac{d^{n}}{dx^{n}}{f_2(x)} + ... + \frac{d^{n}}{dx^{n}}{f_k(x)}$
$\dfrac {d } {d \color{#FF6800}{ x } } {\left( \color{#FF6800}{ 3 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \right)} \color{#FF6800}{ + } \dfrac {d } {d \color{#FF6800}{ x } } {\left( \color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ x } \right)}$
$\dfrac {d } {d \color{#FF6800}{ x } } {\left( \color{#FF6800}{ 3 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \right)} + \dfrac {d } {d x } {\left( - 5 x \right)}$
$ $ It is $ \frac{d}{dx}{(c f(x))} = c \frac{d}{dx}{f(x)}$
$\color{#FF6800}{ 3 } \dfrac {d } {d \color{#FF6800}{ x } } {\left( \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \right)} + \dfrac {d } {d x } {\left( - 5 x \right)}$
$3 \dfrac {d } {d \color{#FF6800}{ x } } {\left( \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \right)} + \dfrac {d } {d x } {\left( - 5 x \right)}$
$ $ It is $ \frac{d}{dx}(x^{n}) = n x^{n-1}$
$3 \times \color{#FF6800}{ 2 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } \color{#FF6800}{ - } \color{#FF6800}{ 1 } } + \dfrac {d } {d x } {\left( - 5 x \right)}$
$3 \times 2 x ^ { 2 - 1 } + \dfrac {d } {d \color{#FF6800}{ x } } {\left( \color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ x } \right)}$
$ $ It is $ \frac{d}{dx}{(c f(x))} = c \frac{d}{dx}{f(x)}$
$3 \times 2 x ^ { 2 - 1 } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \dfrac {d } {d \color{#FF6800}{ x } } {\left( \color{#FF6800}{ x } \right)}$
$3 \times 2 x ^ { 2 - 1 } - 5 \dfrac {d } {d \color{#FF6800}{ x } } {\left( \color{#FF6800}{ x } \right)}$
$ $ It is $ \frac{d}{dx}x = 1$
$3 \times 2 x ^ { 2 - 1 } - 5 \times \color{#FF6800}{ 1 }$
$3 \times 2 x ^ { \color{#FF6800}{ 2 } \color{#FF6800}{ - } \color{#FF6800}{ 1 } } - 5 \times 1$
$ $ Subtract $ 1 $ from $ 2$
$3 \times 2 x ^ { \color{#FF6800}{ 1 } } - 5 \times 1$
$\color{#FF6800}{ 3 } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ \times } \color{#FF6800}{ 1 }$
$ $ Organize the expression $ $
$\color{#FF6800}{ 6 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 5 }$
Solution search results
search-thumbnail-If the sum of two consecutive 
numbers is $45$ and one number is $X$ 
.This statement in the form of 
equation $1s:$ 
$\left(1$ Point) $\right)$ 
$○5x+1$ $1eft\left(x+1$ $r1gnt\right)=45s$ 
$○sx+1ef\left(x+2$ $r1gnt\right)=145s$ 
$sx+1x=45s$
7th-9th grade
Algebra
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo