Calculator search results

Formula
Calculate the differentiation
Answer
circle-check-icon
$\dfrac{d}{dx}{ \left(2 ^{ 2x } \right) }$
$2 ^ { 2 x + 1 } \ln { \left( 2 \right) }$
Calculate the differentiation
$\dfrac {d } {d \color{#FF6800}{ x } } {\left( \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } \color{#FF6800}{ x } } \right)}$
$ $ If $ n $ is a positive number, it is $ \frac{d}{dx}{n^{f(x)}} = n^{f(x)} \ln(n) \frac{d}{dx}{f( x)}$
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } \color{#FF6800}{ x } } \ln { \left( \color{#FF6800}{ 2 } \right) } \dfrac {d } {d \color{#FF6800}{ x } } {\left( \color{#FF6800}{ 2 } \color{#FF6800}{ x } \right)}$
$2 ^ { 2 x } \ln { \left( 2 \right) } \dfrac {d } {d \color{#FF6800}{ x } } {\left( \color{#FF6800}{ 2 } \color{#FF6800}{ x } \right)}$
$ $ It is $ \frac{d}{dx}{(c f(x))} = c \frac{d}{dx}{f(x)}$
$2 ^ { 2 x } \ln { \left( 2 \right) } \times \color{#FF6800}{ 2 } \dfrac {d } {d \color{#FF6800}{ x } } {\left( \color{#FF6800}{ x } \right)}$
$2 ^ { 2 x } \ln { \left( 2 \right) } \times 2 \dfrac {d } {d \color{#FF6800}{ x } } {\left( \color{#FF6800}{ x } \right)}$
$ $ It is $ \frac{d}{dx}x = 1$
$2 ^ { 2 x } \ln { \left( 2 \right) } \times 2 \times \color{#FF6800}{ 1 }$
$2 ^ { 2 x } \ln { \left( 2 \right) } \times 2 \color{#FF6800}{ \times } \color{#FF6800}{ 1 }$
$ $ Multiplying any number by 1 does not change the value $ $
$2 ^ { 2 x } \ln { \left( 2 \right) } \times 2$
$2 ^ { 2 x } \times \color{#FF6800}{ 2 } \ln { \left( 2 \right) }$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$2 ^ { 2 x } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \ln { \left( 2 \right) }$
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } \color{#FF6800}{ x } } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \ln { \left( 2 \right) }$
$ $ Add the exponent as the base is the same $ $
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } \ln { \left( 2 \right) }$
Solution search results
search-thumbnail-If the sum of two consecutive 
numbers is $45$ and one number is $X$ 
.This statement in the form of 
equation $1s:$ 
$\left(1$ Point) $\right)$ 
$○5x+1$ $1eft\left(x+1$ $r1gnt\right)=45s$ 
$○sx+1ef\left(x+2$ $r1gnt\right)=145s$ 
$sx+1x=45s$
7th-9th grade
Algebra
search-thumbnail-$s|ef\left(-1n$ $\left($ }\right)^{50}\ $\right)$ \ | | is\ equal\ to\ $S$ 
$s1S$ 
$S-1S$ 
$s2S$ 
$s50s$
7th-9th grade
Other
Have you found the solution you wanted?
Try again
Try more features at QANDA!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo