# Calculator search results

Formula
Calculate the differentiation
$\dfrac{d}{dx}{ \left( \sin\left( 3x \right) \right) }$
$3 \cos\left( 3 x \right)$
Calculate the differentiation
$\dfrac {d } {d \color{#FF6800}{ x } } {\left( \color{#FF6800}{ \sin\left( 3 x \right) } \right)}$
 It is $\frac{d}{dx}{\sin(f(x))} = \cos(f(x)) \frac{d}{dx}{f(x)}$
$\color{#FF6800}{ \cos\left( 3 x \right) } \dfrac {d } {d \color{#FF6800}{ x } } {\left( \color{#FF6800}{ 3 } \color{#FF6800}{ x } \right)}$
$\cos\left( 3 x \right) \dfrac {d } {d \color{#FF6800}{ x } } {\left( \color{#FF6800}{ 3 } \color{#FF6800}{ x } \right)}$
 It is $\frac{d}{dx}{(c f(x))} = c \frac{d}{dx}{f(x)}$
$\cos\left( 3 x \right) \times \color{#FF6800}{ 3 } \dfrac {d } {d \color{#FF6800}{ x } } {\left( \color{#FF6800}{ x } \right)}$
$\cos\left( 3 x \right) \times 3 \dfrac {d } {d \color{#FF6800}{ x } } {\left( \color{#FF6800}{ x } \right)}$
 It is $\frac{d}{dx}x = 1$
$\cos\left( 3 x \right) \times 3 \times \color{#FF6800}{ 1 }$
$\cos\left( 3 x \right) \times 3 \color{#FF6800}{ \times } \color{#FF6800}{ 1 }$
 Multiplying any number by 1 does not change the value 
$\cos\left( 3 x \right) \times 3$
$\color{#FF6800}{ \cos\left( 3 x \right) } \color{#FF6800}{ \times } \color{#FF6800}{ 3 }$
 Simplify the expression 
$\color{#FF6800}{ 3 } \color{#FF6800}{ \cos\left( 3 x \right) }$
Solution search results