Calculator search results

Formula
Calculate the differentiation
Answer
circle-check-icon
expand-arrow-icon
$\dfrac{d}{dx}{ \left( \sin\left( 3x \right) \right) }$
$3 \cos\left( 3 x \right)$
Calculate the differentiation
$\dfrac {d } {d \color{#FF6800}{ x } } {\left( \color{#FF6800}{ \sin\left( 3 x \right) } \right)}$
$ $ It is $ \frac{d}{dx}{\sin(f(x))} = \cos(f(x)) \frac{d}{dx}{f(x)}$
$\color{#FF6800}{ \cos\left( 3 x \right) } \dfrac {d } {d \color{#FF6800}{ x } } {\left( \color{#FF6800}{ 3 } \color{#FF6800}{ x } \right)}$
$\cos\left( 3 x \right) \dfrac {d } {d \color{#FF6800}{ x } } {\left( \color{#FF6800}{ 3 } \color{#FF6800}{ x } \right)}$
$ $ It is $ \frac{d}{dx}{(c f(x))} = c \frac{d}{dx}{f(x)}$
$\cos\left( 3 x \right) \times \color{#FF6800}{ 3 } \dfrac {d } {d \color{#FF6800}{ x } } {\left( \color{#FF6800}{ x } \right)}$
$\cos\left( 3 x \right) \times 3 \dfrac {d } {d \color{#FF6800}{ x } } {\left( \color{#FF6800}{ x } \right)}$
$ $ It is $ \frac{d}{dx}x = 1$
$\cos\left( 3 x \right) \times 3 \times \color{#FF6800}{ 1 }$
$\cos\left( 3 x \right) \times 3 \color{#FF6800}{ \times } \color{#FF6800}{ 1 }$
$ $ Multiplying any number by 1 does not change the value $ $
$\cos\left( 3 x \right) \times 3$
$\color{#FF6800}{ \cos\left( 3 x \right) } \color{#FF6800}{ \times } \color{#FF6800}{ 3 }$
$ $ Simplify the expression $ $
$\color{#FF6800}{ 3 } \color{#FF6800}{ \cos\left( 3 x \right) }$
Solution search results
search-thumbnail-If the sum of two consecutive 
numbers is $45$ and one number is $X$ 
.This statement in the form of 
equation $1s:$ 
$\left(1$ Point) $\right)$ 
$○5x+1$ $1eft\left(x+1$ $r1gnt\right)=45s$ 
$○sx+1ef\left(x+2$ $r1gnt\right)=145s$ 
$sx+1x=45s$
7th-9th grade
Algebra
Have you found the solution you wanted?
Try again
Try more features at QANDA!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo