qanda-logo
search-icon
Symbol

Calculator search results

Solve the inequality
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
Graph
$\dfrac { x - 4 } { 3 } - \dfrac { 3 x - 5 } { 4 } < 2$
$\dfrac { x - 4 } { 3 } - \dfrac { 3 x - 5 } { 4 } < 2$
Solution of inequality
$x > - 5$
$x > - 5$
$ $ Solve a solution to $ x$
$\color{#FF6800}{ \dfrac { \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 4 } } { \color{#FF6800}{ 3 } } } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { \color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 5 } } { \color{#FF6800}{ 4 } } } < 2$
$ $ Write all numerators above the least common denominator $ $
$\color{#FF6800}{ \dfrac { \color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 16 } \color{#FF6800}{ - } \color{#FF6800}{ 9 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 15 } } { \color{#FF6800}{ 12 } } } < 2$
$\dfrac { \color{#FF6800}{ 4 } \color{#FF6800}{ x } - 16 \color{#FF6800}{ - } \color{#FF6800}{ 9 } \color{#FF6800}{ x } + 15 } { 12 } < 2$
$ $ Calculate between similar terms $ $
$\dfrac { \color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ x } - 16 + 15 } { 12 } < 2$
$\dfrac { - 5 x \color{#FF6800}{ - } \color{#FF6800}{ 16 } \color{#FF6800}{ + } \color{#FF6800}{ 15 } } { 12 } < 2$
$ $ Add $ - 16 $ and $ 15$
$\dfrac { - 5 x \color{#FF6800}{ - } \color{#FF6800}{ 1 } } { 12 } < 2$
$\color{#FF6800}{ \dfrac { \color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 1 } } { \color{#FF6800}{ 12 } } } < \color{#FF6800}{ 2 }$
$ $ Multiply both sides by the least common multiple for the denominators to eliminate the fraction $ $
$\color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 1 } < \color{#FF6800}{ 24 }$
$- 5 x \color{#FF6800}{ - } \color{#FF6800}{ 1 } < 24$
$ $ Move the constant to the right side and change the sign $ $
$- 5 x < 24 \color{#FF6800}{ + } \color{#FF6800}{ 1 }$
$- 5 x < \color{#FF6800}{ 24 } \color{#FF6800}{ + } \color{#FF6800}{ 1 }$
$ $ Add $ 24 $ and $ 1$
$- 5 x < \color{#FF6800}{ 25 }$
$\color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ x } < \color{#FF6800}{ 25 }$
$ $ Change the symbol of the inequality of both sides, and reverse the symbol of the inequality to the opposite direction $ $
$5 x > - 25$
$\color{#FF6800}{ 5 } \color{#FF6800}{ x } > \color{#FF6800}{ - } \color{#FF6800}{ 25 }$
$ $ Divide both sides by the same number $ $
$\color{#FF6800}{ x } > \color{#FF6800}{ - } \color{#FF6800}{ 5 }$
Solution search results
Have you found the solution you wanted?
Try again
Try more features at Qanda!
check-iconSearch by problem image
check-iconAsk 1:1 question to TOP class teachers
check-iconAI recommend problems and video lecture