Calculator search results

Formula
Solve the inequality
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
Graph
$\dfrac { x - 4 } { 3 } - \dfrac { 3 x - 5 } { 4 } < 2$
$\dfrac { x - 4 } { 3 } - \dfrac { 3 x - 5 } { 4 } < 2$
Solution of inequality
$x > - 5$
$\dfrac{ x-4 }{ 3 } - \dfrac{ 3x-5 }{ 4 } < 2$
$x > - 5$
$ $ Solve a solution to $ x$
$\color{#FF6800}{ \dfrac { x - 4 } { 3 } } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 3 x - 5 } { 4 } } < 2$
$ $ Write all numerators above the least common denominator $ $
$\color{#FF6800}{ \dfrac { 4 x - 16 - 9 x + 15 } { 12 } } < 2$
$\dfrac { \color{#FF6800}{ 4 } \color{#FF6800}{ x } - 16 \color{#FF6800}{ - } \color{#FF6800}{ 9 } \color{#FF6800}{ x } + 15 } { 12 } < 2$
$ $ Calculate between similar terms $ $
$\dfrac { \color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ x } - 16 + 15 } { 12 } < 2$
$\dfrac { - 5 x \color{#FF6800}{ - } \color{#FF6800}{ 16 } \color{#FF6800}{ + } \color{#FF6800}{ 15 } } { 12 } < 2$
$ $ Add $ - 16 $ and $ 15$
$\dfrac { - 5 x \color{#FF6800}{ - } \color{#FF6800}{ 1 } } { 12 } < 2$
$\color{#FF6800}{ \dfrac { - 5 x - 1 } { 12 } } < \color{#FF6800}{ 2 }$
$ $ Multiply both sides by the least common multiple for the denominators to eliminate the fraction $ $
$\color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 1 } < \color{#FF6800}{ 24 }$
$- 5 x \color{#FF6800}{ - } \color{#FF6800}{ 1 } < 24$
$ $ Move the constant to the right side and change the sign $ $
$- 5 x < 24 \color{#FF6800}{ + } \color{#FF6800}{ 1 }$
$- 5 x < \color{#FF6800}{ 24 } \color{#FF6800}{ + } \color{#FF6800}{ 1 }$
$ $ Add $ 24 $ and $ 1$
$- 5 x < \color{#FF6800}{ 25 }$
$\color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ x } < \color{#FF6800}{ 25 }$
$ $ Change the symbol of the inequality of both sides, and reverse the symbol of the inequality to the opposite direction $ $
$5 x > - 25$
$\color{#FF6800}{ 5 } \color{#FF6800}{ x } > \color{#FF6800}{ - } \color{#FF6800}{ 25 }$
$ $ Divide both sides by the same number $ $
$\color{#FF6800}{ x } > \color{#FF6800}{ - } \color{#FF6800}{ 5 }$
$ $ 그래프 보기 $ $
Inequality
Solution search results
search-thumbnail-Simplity the expression by reducing it to a 
single fraction 
$\dfrac {2x-5} {4}-\dfrac {1-x} {3}-\dfrac {x-4} {2}$
7th-9th grade
Algebra
search-thumbnail-
$18$ Jika $g\left(x\right)$ = $x+1$ dan $\left(f0g\right)\left(x\right)=\dfrac {1+4x} {2x-3}$ 
maka $f^{-1}\left(x\right)=$ . .. 
A. $\dfrac {3x-1} {4x-5}$ $\dfrac {2x=4} {5x-3}$ 
$\dfrac {2x-4} {3x+5}$ $B$ $\dfrac {5x-3} {2x-4}$ 
C. $\dfrac {3x-5} {4+2x}$
10th-13th grade
Trigonometry
search-thumbnail-$\dfrac {3x-5} {5x-5^{-}}+\dfrac {5x-1} {7x7}-\dfrac {x-4} {1-x}=2$
10th-13th grade
Calculus
Have you found the solution you wanted?
Try again
Try more features at QANDA!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo