Calculator search results

Formula
Solve the equation
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
Graph
$y = \dfrac { x - 2 } { 3 } - \dfrac { 2 x + 3 } { 5 }$
$y = - 1$
$x$-intercept
$\left ( - 19 , 0 \right )$
$y$-intercept
$\left ( 0 , - \dfrac { 19 } { 15 } \right )$
$\dfrac{ x-2 }{ 3 } - \dfrac{ 2x+3 }{ 5 } = -1$
$x = - 4$
$ $ Solve a solution to $ x$
$\color{#FF6800}{ \dfrac { x - 2 } { 3 } } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 2 x + 3 } { 5 } } = - 1$
$ $ Write all numerators above the least common denominator $ $
$\color{#FF6800}{ \dfrac { 5 x - 10 - 6 x - 9 } { 15 } } = - 1$
$\dfrac { \color{#FF6800}{ 5 } \color{#FF6800}{ x } - 10 \color{#FF6800}{ - } \color{#FF6800}{ 6 } \color{#FF6800}{ x } - 9 } { 15 } = - 1$
$ $ Calculate between similar terms $ $
$\dfrac { \color{#FF6800}{ - } \color{#FF6800}{ x } - 10 - 9 } { 15 } = - 1$
$\dfrac { - x \color{#FF6800}{ - } \color{#FF6800}{ 10 } \color{#FF6800}{ - } \color{#FF6800}{ 9 } } { 15 } = - 1$
$ $ Find the sum of the negative numbers $ $
$\dfrac { - x \color{#FF6800}{ - } \color{#FF6800}{ 19 } } { 15 } = - 1$
$\color{#FF6800}{ \dfrac { - x - 19 } { 15 } } = \color{#FF6800}{ - } \color{#FF6800}{ 1 }$
$ $ Multiply both sides by the least common multiple for the denominators to eliminate the fraction $ $
$\color{#FF6800}{ - } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 19 } = \color{#FF6800}{ - } \color{#FF6800}{ 15 }$
$- x \color{#FF6800}{ - } \color{#FF6800}{ 19 } = - 15$
$ $ Move the constant to the right side and change the sign $ $
$- x = - 15 \color{#FF6800}{ + } \color{#FF6800}{ 19 }$
$- x = \color{#FF6800}{ - } \color{#FF6800}{ 15 } \color{#FF6800}{ + } \color{#FF6800}{ 19 }$
$ $ Add $ - 15 $ and $ 19$
$- x = \color{#FF6800}{ 4 }$
$\color{#FF6800}{ - } \color{#FF6800}{ x } = \color{#FF6800}{ 4 }$
$ $ Change the sign of both sides of the equation $ $
$\color{#FF6800}{ x } = \color{#FF6800}{ - } \color{#FF6800}{ 4 }$
$ $ 그래프 보기 $ $
Graph
Solution search results
search-thumbnail-$3.$ Solve the $to|oMin9:$ 
$1\right)$ $3\left(x+6\right)=9$ 
$1\right)$ $2\left(x-4\right)=6$ 
$1\right)$ $\dfrac {2x+3} {5}=-1$ $\dfrac {2x} {3}-4=X+5$ 
$iv\right)$
7th-9th grade
Algebra
search-thumbnail-$\dfrac {2x+1} {6}$ $\dfrac {x-2} {9}<\dfrac {x+3} {3}-\dfrac {x+5} {2}$
10th-13th grade
Other
search-thumbnail-$\dfrac {3x-2} {4}+x=$ $\dfrac {2} {3}$ $-$ $\dfrac {2x+3} {3}$
7th-9th grade
Algebra
Have you found the solution you wanted?
Try again
Try more features at QANDA!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo