Calculator search results

Formula
Solve the equation
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
Graph
$y = \dfrac { x - 1 } { 3 }$
$y = \dfrac { 2 x + 3 } { 5 } - 1$
$x$-intercept
$\left ( 1 , 0 \right )$
$y$-intercept
$\left ( 0 , - \dfrac { 1 } { 3 } \right )$
$x$-intercept
$\left ( 1 , 0 \right )$
$y$-intercept
$\left ( 0 , - \dfrac { 2 } { 5 } \right )$
$\dfrac{ x-1 }{ 3 } = \dfrac{ 2x+3 }{ 5 } -1$
$x = 1$
$ $ Solve a solution to $ x$
$\dfrac { x - 1 } { 3 } = \dfrac { 2 x + 3 } { 5 } \color{#FF6800}{ - } \color{#FF6800}{ 1 }$
$ $ Convert an equation to a fraction using $ a=\dfrac{a}{1}$
$\dfrac { x - 1 } { 3 } = \dfrac { 2 x + 3 } { 5 } + \color{#FF6800}{ \dfrac { - 1 } { 1 } }$
$\dfrac { x - 1 } { 3 } = \color{#FF6800}{ \dfrac { 2 x + 3 } { 5 } } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { - 1 } { 1 } }$
$ $ Write all numerators above the least common denominator $ $
$\dfrac { x - 1 } { 3 } = \color{#FF6800}{ \dfrac { 2 x + 3 - 5 } { 5 } }$
$\dfrac { x - 1 } { 3 } = \dfrac { 2 x + \color{#FF6800}{ 3 } \color{#FF6800}{ - } \color{#FF6800}{ 5 } } { 5 }$
$ $ Subtract $ 5 $ from $ 3$
$\dfrac { x - 1 } { 3 } = \dfrac { 2 x \color{#FF6800}{ - } \color{#FF6800}{ 2 } } { 5 }$
$\color{#FF6800}{ \dfrac { x - 1 } { 3 } } = \color{#FF6800}{ \dfrac { 2 x - 2 } { 5 } }$
$ $ Multiply both sides by the least common multiple for the denominators to eliminate the fraction $ $
$\color{#FF6800}{ 5 } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) = \color{#FF6800}{ 6 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 6 }$
$\color{#FF6800}{ 5 } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) = \color{#FF6800}{ 6 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 6 }$
$ $ Organize the expression $ $
$\color{#FF6800}{ 5 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 6 } \color{#FF6800}{ x } = \color{#FF6800}{ - } \color{#FF6800}{ 6 } \color{#FF6800}{ + } \color{#FF6800}{ 5 }$
$\color{#FF6800}{ 5 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 6 } \color{#FF6800}{ x } = - 6 + 5$
$ $ Organize the expression $ $
$\color{#FF6800}{ - } \color{#FF6800}{ x } = - 6 + 5$
$- x = \color{#FF6800}{ - } \color{#FF6800}{ 6 } \color{#FF6800}{ + } \color{#FF6800}{ 5 }$
$ $ Add $ - 6 $ and $ 5$
$- x = \color{#FF6800}{ - } \color{#FF6800}{ 1 }$
$\color{#FF6800}{ - } \color{#FF6800}{ x } = \color{#FF6800}{ - } \color{#FF6800}{ 1 }$
$ $ Change the sign of both sides of the equation $ $
$\color{#FF6800}{ x } = \color{#FF6800}{ - } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right )$
$x = \color{#FF6800}{ - } \left ( \color{#FF6800}{ - } 1 \right )$
$ $ Simplify Minus $ $
$x = 1$
$ $ 그래프 보기 $ $
Graph
Solution search results
search-thumbnail-$\dfrac {2x+3} {4}-\dfrac {2x-1} {3}=1$
7th-9th grade
Other
search-thumbnail-$b\right)$ $\dfrac {2x+3} {4}-$ $\dfrac {2x-1} {3}=1$ 1
7th-9th grade
Other
search-thumbnail-c) Solve for $x∴$ 
$\dfrac {x+3} {5}+\dfrac {x-2} {2}-\dfrac {x-1} {3}=0$
7th-9th grade
Algebra
Have you found the solution you wanted?
Try again
Try more features at QANDA!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo