Solve the system of equations 2x-y=1; x+2y=8 graphically and find the coordinates of the points where corresponding lines intersect y-axis.
Symbol
Search
App Store
Google Play
Calculator search results
Solve the equation
Answer
See the solving process
Graph
See details
$y = \dfrac { x + 1 } { 3 } - \dfrac { x - 3 } { 2 }$
$y = 1$
$x$Intercept
$\left ( 11 , 0 \right )$
$y$Intercept
$\left ( 0 , \dfrac { 11 } { 6 } \right )$
$x = 5$
$ $ Solve a solution to $ x$
$\color{#FF6800}{ \dfrac { \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } { \color{#FF6800}{ 3 } } } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 3 } } { \color{#FF6800}{ 2 } } } = 1$
$ $ Write all numerators above the least common denominator $ $
$\color{#FF6800}{ \dfrac { \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 9 } } { \color{#FF6800}{ 6 } } } = 1$
$\dfrac { \color{#FF6800}{ 2 } \color{#FF6800}{ x } + 2 \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ x } + 9 } { 6 } = 1$
$ $ Calculate between similar terms $ $
$\dfrac { \color{#FF6800}{ - } \color{#FF6800}{ x } + 2 + 9 } { 6 } = 1$
$\dfrac { - x + \color{#FF6800}{ 2 } \color{#FF6800}{ + } \color{#FF6800}{ 9 } } { 6 } = 1$
$ $ Add $ 2 $ and $ 9$
$\dfrac { - x + \color{#FF6800}{ 11 } } { 6 } = 1$
$\color{#FF6800}{ \dfrac { \color{#FF6800}{ - } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 11 } } { \color{#FF6800}{ 6 } } } = \color{#FF6800}{ 1 }$
$ $ Multiply both sides by the least common multiple for the denominators to eliminate the fraction $ $
$\color{#FF6800}{ - } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 11 } = \color{#FF6800}{ 6 }$
$- x \color{#FF6800}{ + } \color{#FF6800}{ 11 } = 6$
$ $ Move the constant to the right side and change the sign $ $
$- x = 6 \color{#FF6800}{ - } \color{#FF6800}{ 11 }$
$- x = \color{#FF6800}{ 6 } \color{#FF6800}{ - } \color{#FF6800}{ 11 }$
$ $ Subtract $ 11 $ from $ 6$
$- x = \color{#FF6800}{ - } \color{#FF6800}{ 5 }$
$\color{#FF6800}{ - } \color{#FF6800}{ x } = \color{#FF6800}{ - } \color{#FF6800}{ 5 }$
$ $ Change the sign of both sides of the equation $ $
$x = 5$
Solution search results
Which of the following rational numbers are equivalent? $0Ptionsy$ A \frac{5}{6}, \frac{30}{36} B $s\sqrt{rac\left(} -2\right)\left(3\right)\sqrt{1rac} \sqrt{4\right)16\right)4} $ C $s\sqrt{11aC\left(} -4\right)1-7b,\sqrt{1rac\left(16\sqrt{35\right)9} } $ D \frac{1}{2},\frac{3}{8}
7th-9th grade
Other
Search count: 5,909
Check solution
Question $14$ Not yet answered Marked out of $1.00$ $1+x$ $x=\sqrt{\left(Nfrac\left(2ab\right)\left(a} +b\right)$ $1\right)$ then the value of $\right)$ $\left(fr0c\left(x+a\right)\left(x-a\right)+lfrac\left(x+b\right)\left(x-b\right)$ $1\right)$ $1s$ Select $One$ a. $a/b$ b. $1$ $○$ $c2$ $2$ $○$ d. $a^{2}+b^{2}$ $○$ CLEAR MY CHOICE
Other
Check solution
In the following problem $a,b,$ b,and c represent REAL NUMBERS. The derivative of $g\left(x\right)=log _{a}\left(bx\right)+cx^{2}is$ $○$ $g^{1}\left(x\right)=\right)dfrac\left(b\right)log _{-}a\left(bx\right)\right)\left(N1n$ $a\right)+2cx1\right)$ $○$ $\left(g\left(x\right)=\right)dtracb$ $loga\left(bx\right)+2c\times \right)Nln$ a}\) $○$ $g^{'}\left(x\right)=\left(dfraC\left(a\right)log _{-}a\left(bx\right)\right)\left(ln$ $\right)+2c\times 1\right)\right)$ $○$ $g^{1}\left(x\right)=\left(dfrac\left(b$ $log _{-}a\left(bx\right)\right)\left(ln$ $a1\right)$ $○$ $\left(\left(g^{1}\left(x\right)=b$ $log _{-}a\left(bx\right)+2cx1\right)$ $○$ $g\left(x\right)=\left(dfrac\left(b$ $log _{-}a\left(bx\right)\right)\left(1ln$ $a|+2c1\right)$
Calculus
Check solution
$1f\left(u=\left(rac\left(x^{n}3+y^{n}3\right)\left(x+y\right)\right)$ then $\left($ xfrac{partial $1\right)$ {partial $x\right)+y\left(raC\left(paF|a|$ u} {partial $y\right)=2\right)$ $0$ $0$ $20$ $301$
Calculus
Search count: 157
Check solution
$\left(int|imits$ $-0a1\left(1-\times n_{2}{\right)_{3}}^{n}$ $x^{A}3dx=7\right)$ $\left($ $frac\left(1\right)\left(40\right)\right)$ $\left($ $\left(troc\left(1\right)\left(35\right)\right)$ $\left(troc\left(1\right)\left(30\right)\right)$ $\left(tr0c\left(1\right)\left(25\right)\right)$
Calculus
Check solution
$5$ Consider the following system. $ \begin{cases} f\left(x\right)=3\left(x-4\right)^{2}+12 \\ g\left(x\right)=\bar{\left(x} +2\right)^{2}-13 \end{cases} $ Where is $f\left(x\right)=g\left(x\right)2$ Select all that apply. $\left(-5.61\right)$ $\square $ $\square $ $\left(-1.1\right)$ $\left(-3\right)$ $\square $ $\left(\dfrac {5+i\sqrt{2} } {2}\right)$ $\square $ $\left(2\right)$ $\square $ $\left(\dfrac {5-t\sqrt{2} } {2}\right)$ $\left(6\right)$
10th-13th grade
Algebra
Check solution
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
App Store
Google Play
© 2021 Mathpresso Inc.
|
CEO Jongheun Lee, Yongjae Lee
|
17th Floor, WeWork Seolleung Station III, 428, Seolleung-ro, Gangnam-gu, Seoul
|
EMAIL support.en@mathpresso.com