Solve the system of equations 2x-y=1; x+2y=8 graphically and find the coordinates of the points where corresponding lines intersect y-axis.
Symbol
Search
App Store
Google Play
Calculator search results
Calculate the value
Answer
See the solving process
$- x ^ { 15 } y ^ { 3 }$
Arrange the rational expression
$\dfrac { x ^ { 10 } } { y ^ { 3 } } \times \left ( \color{#FF6800}{ - } x ^ { 5 } \right ) y ^ { 6 }$
$ $ If you multiply negative numbers by odd numbers, move the (-) sign forward $ $
$- \dfrac { x ^ { 10 } } { y ^ { 3 } } x ^ { 5 } y ^ { 6 }$
$\color{#FF6800}{ - } \color{#FF6800}{ \dfrac { \color{#FF6800}{ x } ^ { \color{#FF6800}{ 10 } } } { \color{#FF6800}{ y } ^ { \color{#FF6800}{ 3 } } } } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 5 } } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 6 } }$
$ $ Calculate the multiplication expression $ $
$\color{#FF6800}{ - } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 15 } } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 3 } }$
Solution search results
Using the \emph{removal of first derivative} method, the differential equation \( \frac{d^{2}y} $\left(d\times n$ $\left(2\right)\right)+P|ffac\left(dy\right)\left(dx\right)+Qy=F$ $dx\right)+Qy=RN\right)$ is transformed as \). For, the differential equation \frac{d^{2}y} $\left(d^{n}\left(2\right)y\right)$ $dx$ $\left(2\right)+2x$ $\left(0C\left(dy\right)\left(dx\right)+\left(x$ $2+1\right)y=\times n3+3x\right)$ the value of $\left(11\right)$
Calculus
Search count: 3,465
Check solution
$1f\left(u=\left(rac\left(x^{n}3+y^{n}3\right)\left(x+y\right)\right)$ then $\left($ xfrac{partial $1\right)$ {partial $x\right)+y\left(raC\left(paF|a|$ u} {partial $y\right)=2\right)$ $0$ $0$ $20$ $301$
Calculus
Search count: 157
Check solution
In the following problem $a,b,$ b,and c represent REAL NUMBERS. The derivative of $g\left(x\right)=log _{a}\left(bx\right)+cx^{2}is$ $○$ $g^{1}\left(x\right)=\right)dfrac\left(b\right)log _{-}a\left(bx\right)\right)\left(N1n$ $a\right)+2cx1\right)$ $○$ $\left(g\left(x\right)=\right)dtracb$ $loga\left(bx\right)+2c\times \right)Nln$ a}\) $○$ $g^{'}\left(x\right)=\left(dfraC\left(a\right)log _{-}a\left(bx\right)\right)\left(ln$ $\right)+2c\times 1\right)\right)$ $○$ $g^{1}\left(x\right)=\left(dfrac\left(b$ $log _{-}a\left(bx\right)\right)\left(ln$ $a1\right)$ $○$ $\left(\left(g^{1}\left(x\right)=b$ $log _{-}a\left(bx\right)+2cx1\right)$ $○$ $g\left(x\right)=\left(dfrac\left(b$ $log _{-}a\left(bx\right)\right)\left(1ln$ $a|+2c1\right)$
Calculus
Check solution
$\left($ limlimits_{Degin{array}{I) $x$ ightarrow $1\right)$ \y ightarrow $1$ end{array)}} $ac\left(\times \times 2-y^{n}$ $2\right)\times \left(x-y\right)=7\right)$
Algebra
Search count: 969
Check solution
$\left(int|imits$ $-0a1\left(1-\times n_{2}{\right)_{3}}^{n}$ $x^{A}3dx=7\right)$ $\left($ $frac\left(1\right)\left(40\right)\right)$ $\left($ $\left(troc\left(1\right)\left(35\right)\right)$ $\left(troc\left(1\right)\left(30\right)\right)$ $\left(tr0c\left(1\right)\left(25\right)\right)$
Calculus
Check solution
Question $14$ Not yet answered Marked out of $1.00$ $1+x$ $x=\sqrt{\left(Nfrac\left(2ab\right)\left(a} +b\right)$ $1\right)$ then the value of $\right)$ $\left(fr0c\left(x+a\right)\left(x-a\right)+lfrac\left(x+b\right)\left(x-b\right)$ $1\right)$ $1s$ Select $One$ a. $a/b$ b. $1$ $○$ $c2$ $2$ $○$ d. $a^{2}+b^{2}$ $○$ CLEAR MY CHOICE
Other
Check solution
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
App Store
Google Play
© 2021 Mathpresso Inc.
|
CEO Jongheun Lee, Yongjae Lee
|
17th Floor, WeWork Seolleung Station III, 428, Seolleung-ro, Gangnam-gu, Seoul
|
EMAIL support.en@mathpresso.com