Calculator search results

Formula
Solve the equation
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
Graph
$y = \dfrac { x } { 6 } - \dfrac { x + 5 } { 8 }$
$y = 1$
$x$-intercept
$\left ( 15 , 0 \right )$
$y$-intercept
$\left ( 0 , - \dfrac { 5 } { 8 } \right )$
$\dfrac{ x }{ 6 } - \dfrac{ x+5 }{ 8 } = 1$
$x = 39$
$ $ Solve a solution to $ x$
$\color{#FF6800}{ \dfrac { x } { 6 } } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { x + 5 } { 8 } } = \color{#FF6800}{ 1 }$
$ $ Multiply both sides by the least common multiple for the denominators to eliminate the fraction $ $
$\color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ - } \left ( \color{#FF6800}{ 3 } \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 5 } \right ) \right ) = \color{#FF6800}{ 24 }$
$4 x - \left ( \color{#FF6800}{ 3 } \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 5 } \right ) \right ) = 24$
$ $ Multiply each term in parentheses by $ 3$
$4 x - \left ( \color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } \right ) = 24$
$4 x - \left ( 3 x + \color{#FF6800}{ 3 } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } \right ) = 24$
$ $ Multiply $ 3 $ and $ 5$
$4 x - \left ( 3 x + \color{#FF6800}{ 15 } \right ) = 24$
$4 x \color{#FF6800}{ - } \left ( \color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 15 } \right ) = 24$
$ $ Change the symbol of each term in parentheses when there is a (-) symbol in front of parentheses $ $
$4 x \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 15 } = 24$
$\color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ x } - 15 = 24$
$ $ Calculate between similar terms $ $
$\color{#FF6800}{ x } - 15 = 24$
$x \color{#FF6800}{ - } \color{#FF6800}{ 15 } = 24$
$ $ Move the constant to the right side and change the sign $ $
$x = 24 \color{#FF6800}{ + } \color{#FF6800}{ 15 }$
$x = \color{#FF6800}{ 24 } \color{#FF6800}{ + } \color{#FF6800}{ 15 }$
$ $ Add $ 24 $ and $ 15$
$x = \color{#FF6800}{ 39 }$
$ $ 그래프 보기 $ $
Graph
Solution search results
search-thumbnail-$2$ Indicate the integral part of the numbersx which satisfy the system 
of inequalities. $ \begin{cases} \dfrac {x-1} {2}-\dfrac {2x+3} {3}+\dfrac {x} {6}<2-\dfrac {x+5} {2} \\ 1-\dfrac {x+5} {8}+\dfrac {4-x} {2}<3x-\dfrac {x+1} {4} \end{cases} $
10th-13th grade
Other
Have you found the solution you wanted?
Try again
Try more features at QANDA!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo