# Calculator search results

Formula
Solve the equation
Graph
$y = \dfrac { x } { 6 } + 5$
$y = \dfrac { 1 } { 3 } - x$
$x$Intercept
$\left ( - 30 , 0 \right )$
$y$Intercept
$\left ( 0 , 5 \right )$
$x$Intercept
$\left ( \dfrac { 1 } { 3 } , 0 \right )$
$y$Intercept
$\left ( 0 , \dfrac { 1 } { 3 } \right )$
$\dfrac{ x }{ 6 } +5 = \dfrac{ 1 }{ 3 } -x$
$x = - 4$
 Solve a solution to $x$
$\color{#FF6800}{ \dfrac { x } { 6 } } \color{#FF6800}{ + } \color{#FF6800}{ 5 } = \color{#FF6800}{ \dfrac { 1 } { 3 } } \color{#FF6800}{ - } \color{#FF6800}{ x }$
 Multiply both sides by the least common multiple for the denominators to eliminate the fraction 
$\color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 30 } = \color{#FF6800}{ - } \color{#FF6800}{ 6 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 2 }$
$x + 30 = \color{#FF6800}{ - } \color{#FF6800}{ 6 } \color{#FF6800}{ x } + 2$
 Move the variable to the left-hand side and change the symbol 
$x + 30 \color{#FF6800}{ + } \color{#FF6800}{ 6 } \color{#FF6800}{ x } = 2$
$x \color{#FF6800}{ + } \color{#FF6800}{ 30 } + 6 x = 2$
 Move the constant to the right side and change the sign 
$x + 6 x = 2 \color{#FF6800}{ - } \color{#FF6800}{ 30 }$
$\color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 6 } \color{#FF6800}{ x } = 2 - 30$
 Organize the expression 
$\color{#FF6800}{ 7 } \color{#FF6800}{ x } = 2 - 30$
$7 x = \color{#FF6800}{ 2 } \color{#FF6800}{ - } \color{#FF6800}{ 30 }$
 Subtract $30$ from $2$
$7 x = \color{#FF6800}{ - } \color{#FF6800}{ 28 }$
$\color{#FF6800}{ 7 } \color{#FF6800}{ x } = \color{#FF6800}{ - } \color{#FF6800}{ 28 }$
 Divide both sides by the same number 
$\color{#FF6800}{ x } = \color{#FF6800}{ - } \color{#FF6800}{ 4 }$
 그래프 보기 
Graph
Solution search results