Calculator search results

Formula
Solve the inequality
Graph
$\dfrac { x } { 3 } - 0.2 \left ( x + 5 \right ) \leq 1$
$\dfrac { x } { 3 } - 0.2 \left ( x + 5 \right ) \leq 1$
Solution of inequality
$x \leq 15$
$\dfrac{ x }{ 3 } -0.2 \left( x+5 \right) \leq 1$
$x \leq 15$
 Solve a solution to $x$
$\dfrac { x } { 3 } \color{#FF6800}{ - } \color{#FF6800}{ 0.2 } \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 5 } \right ) \leq 1$
 Multiply each term in parentheses by $- 0.2$
$\dfrac { x } { 3 } \color{#FF6800}{ - } \color{#FF6800}{ 0.2 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 0.2 } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } \leq 1$
$\dfrac { x } { 3 } \color{#FF6800}{ - } \color{#FF6800}{ 0.2 } \color{#FF6800}{ x } - 0.2 \times 5 \leq 1$
 Calculate the multiplication expression 
$\dfrac { x } { 3 } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { x } { 5 } } - 0.2 \times 5 \leq 1$
$\dfrac { x } { 3 } - \dfrac { x } { 5 } \color{#FF6800}{ - } \color{#FF6800}{ 0.2 } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } \leq 1$
 Multiply $- 0.2$ and $5$
$\dfrac { x } { 3 } - \dfrac { x } { 5 } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \leq 1$
$\color{#FF6800}{ \dfrac { x } { 3 } } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { x } { 5 } } - 1 \leq 1$
 Write all numerators above the least common denominator 
$\color{#FF6800}{ \dfrac { 5 x - 3 x } { 15 } } - 1 \leq 1$
$\dfrac { 5 x - 3 x } { 15 } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \leq 1$
 Convert an equation to a fraction using $a=\dfrac{a}{1}$
$\dfrac { 5 x - 3 x } { 15 } + \color{#FF6800}{ \dfrac { - 1 } { 1 } } \leq 1$
$\color{#FF6800}{ \dfrac { 5 x - 3 x } { 15 } } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { - 1 } { 1 } } \leq 1$
 Write all numerators above the least common denominator 
$\color{#FF6800}{ \dfrac { 5 x - 3 x - 15 } { 15 } } \leq 1$
$\dfrac { \color{#FF6800}{ 5 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ x } - 15 } { 15 } \leq 1$
 Calculate between similar terms 
$\dfrac { \color{#FF6800}{ 2 } \color{#FF6800}{ x } - 15 } { 15 } \leq 1$
$\color{#FF6800}{ \dfrac { 2 x - 15 } { 15 } } \leq \color{#FF6800}{ 1 }$
 Multiply both sides by the least common multiple for the denominators to eliminate the fraction 
$\color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 15 } \leq \color{#FF6800}{ 15 }$
$2 x \color{#FF6800}{ - } \color{#FF6800}{ 15 } \leq 15$
 Move the constant to the right side and change the sign 
$2 x \leq 15 \color{#FF6800}{ + } \color{#FF6800}{ 15 }$
$2 x \leq \color{#FF6800}{ 15 } \color{#FF6800}{ + } \color{#FF6800}{ 15 }$
 Add $15$ and $15$
$2 x \leq \color{#FF6800}{ 30 }$
$\color{#FF6800}{ 2 } \color{#FF6800}{ x } \leq \color{#FF6800}{ 30 }$
 Divide both sides by the same number 
$\color{#FF6800}{ x } \leq \color{#FF6800}{ 15 }$
 그래프 보기 
Inequality
Solution search results