qanda-logo
search-icon
Symbol

Calculator search results

Solve the inequality
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
Graph
$\dfrac { x } { 3 } - \dfrac { x - 4 } { 2 } \leq 3$
$\dfrac { x } { 3 } - \dfrac { x - 4 } { 2 } \leq 3$
Solution of inequality
$x \geq - 6$
$x \geq - 6$
$ $ Solve a solution to $ x$
$\color{#FF6800}{ \dfrac { \color{#FF6800}{ x } } { \color{#FF6800}{ 3 } } } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 4 } } { \color{#FF6800}{ 2 } } } \leq \color{#FF6800}{ 3 }$
$ $ Multiply both sides by the least common multiple for the denominators to eliminate the fraction $ $
$\color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ - } \left ( \color{#FF6800}{ 3 } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \right ) \right ) \leq \color{#FF6800}{ 18 }$
$2 x - \left ( \color{#FF6800}{ 3 } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \right ) \right ) \leq 18$
$ $ Multiply each term in parentheses by $ 3$
$2 x - \left ( \color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 4 } \right ) \right ) \leq 18$
$2 x - \left ( 3 x + \color{#FF6800}{ 3 } \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 4 } \right ) \right ) \leq 18$
$ $ Multiply $ 3 $ and $ - 4$
$2 x - \left ( 3 x \color{#FF6800}{ - } \color{#FF6800}{ 12 } \right ) \leq 18$
$2 x \color{#FF6800}{ - } \left ( \color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 12 } \right ) \leq 18$
$ $ Change the symbol of each term in parentheses when there is a (-) symbol in front of parentheses $ $
$2 x \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ x } + \color{#FF6800}{ 12 } \leq 18$
$\color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ x } + 12 \leq 18$
$ $ Calculate between similar terms $ $
$\color{#FF6800}{ - } \color{#FF6800}{ x } + 12 \leq 18$
$- x \color{#FF6800}{ + } \color{#FF6800}{ 12 } \leq 18$
$ $ Move the constant to the right side and change the sign $ $
$- x \leq 18 \color{#FF6800}{ - } \color{#FF6800}{ 12 }$
$- x \leq \color{#FF6800}{ 18 } \color{#FF6800}{ - } \color{#FF6800}{ 12 }$
$ $ Subtract $ 12 $ from $ 18$
$- x \leq \color{#FF6800}{ 6 }$
$\color{#FF6800}{ - } \color{#FF6800}{ x } \leq \color{#FF6800}{ 6 }$
$ $ Change the symbol of the inequality of both sides, and reverse the symbol of the inequality to the opposite direction $ $
$x \geq - 6$
Solution search results
Have you found the solution you wanted?
Try again
Try more features at Qanda!
check-iconSearch by problem image
check-iconAsk 1:1 question to TOP class teachers
check-iconAI recommend problems and video lecture