$\dfrac { x } { 2 } - \dfrac { \color{#FF6800}{ 2 } \color{#FF6800}{ - } \color{#FF6800}{ x } } { 6 } = 7$
$ $ Organize the expression $ $
$\dfrac { x } { 2 } - \dfrac { \color{#FF6800}{ - } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 2 } } { 6 } = 7$
$\color{#FF6800}{ \dfrac { \color{#FF6800}{ x } } { \color{#FF6800}{ 2 } } } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { \color{#FF6800}{ - } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 2 } } { \color{#FF6800}{ 6 } } } = \color{#FF6800}{ 7 }$
$ $ Multiply both sides by the least common multiple for the denominators to eliminate the fraction $ $
$\color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ - } \left ( \color{#FF6800}{ - } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right ) = \color{#FF6800}{ 42 }$
$3 x \color{#FF6800}{ - } \left ( \color{#FF6800}{ - } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right ) = 42$
$ $ Change the symbol of each term in parentheses when there is a (-) symbol in front of parentheses $ $
$3 x + \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 } = 42$
$\color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ x } - 2 = 42$
$ $ Calculate between similar terms $ $
$\color{#FF6800}{ 4 } \color{#FF6800}{ x } - 2 = 42$
$4 x \color{#FF6800}{ - } \color{#FF6800}{ 2 } = 42$
$ $ Move the constant to the right side and change the sign $ $
$4 x = 42 \color{#FF6800}{ + } \color{#FF6800}{ 2 }$
$4 x = \color{#FF6800}{ 42 } \color{#FF6800}{ + } \color{#FF6800}{ 2 }$
$ $ Add $ 42 $ and $ 2$
$4 x = \color{#FF6800}{ 44 }$
$\color{#FF6800}{ 4 } \color{#FF6800}{ x } = \color{#FF6800}{ 44 }$
$ $ Divide both sides by the same number $ $
$\color{#FF6800}{ x } = \color{#FF6800}{ 11 }$