qanda-logo
search-icon
Symbol

Calculator search results

Solve the equation
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
Graph
$y = \dfrac { x } { 2 } - \dfrac { 2 - x } { 6 }$
$y = 7$
$x$Intercept
$\left ( \dfrac { 1 } { 2 } , 0 \right )$
$y$Intercept
$\left ( 0 , - \dfrac { 1 } { 3 } \right )$
$x = 11$
$ $ Solve a solution to $ x$
$\dfrac { x } { 2 } - \dfrac { \color{#FF6800}{ 2 } \color{#FF6800}{ - } \color{#FF6800}{ x } } { 6 } = 7$
$ $ Organize the expression $ $
$\dfrac { x } { 2 } - \dfrac { \color{#FF6800}{ - } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 2 } } { 6 } = 7$
$\color{#FF6800}{ \dfrac { \color{#FF6800}{ x } } { \color{#FF6800}{ 2 } } } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { \color{#FF6800}{ - } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 2 } } { \color{#FF6800}{ 6 } } } = \color{#FF6800}{ 7 }$
$ $ Multiply both sides by the least common multiple for the denominators to eliminate the fraction $ $
$\color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ - } \left ( \color{#FF6800}{ - } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right ) = \color{#FF6800}{ 42 }$
$3 x \color{#FF6800}{ - } \left ( \color{#FF6800}{ - } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right ) = 42$
$ $ Change the symbol of each term in parentheses when there is a (-) symbol in front of parentheses $ $
$3 x + \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 } = 42$
$\color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ x } - 2 = 42$
$ $ Calculate between similar terms $ $
$\color{#FF6800}{ 4 } \color{#FF6800}{ x } - 2 = 42$
$4 x \color{#FF6800}{ - } \color{#FF6800}{ 2 } = 42$
$ $ Move the constant to the right side and change the sign $ $
$4 x = 42 \color{#FF6800}{ + } \color{#FF6800}{ 2 }$
$4 x = \color{#FF6800}{ 42 } \color{#FF6800}{ + } \color{#FF6800}{ 2 }$
$ $ Add $ 42 $ and $ 2$
$4 x = \color{#FF6800}{ 44 }$
$\color{#FF6800}{ 4 } \color{#FF6800}{ x } = \color{#FF6800}{ 44 }$
$ $ Divide both sides by the same number $ $
$\color{#FF6800}{ x } = \color{#FF6800}{ 11 }$
Solution search results
Have you found the solution you wanted?
Try again
Try more features at Qanda!
check-iconSearch by problem image
check-iconAsk 1:1 question to TOP class teachers
check-iconAI recommend problems and video lecture