Symbol

# Calculator search results

Formula
Solve the equation
Graph
$y = \dfrac { x } { 2 } + 1$
$y = \dfrac { x - 1 } { 5 }$
$x$Intercept
$\left ( - 2 , 0 \right )$
$y$Intercept
$\left ( 0 , 1 \right )$
$x$Intercept
$\left ( 1 , 0 \right )$
$y$Intercept
$\left ( 0 , - \dfrac { 1 } { 5 } \right )$
$\dfrac{ x }{ 2 } +1 = \dfrac{ x-1 }{ 5 }$
$x = - 4$
 Solve a solution to $x$
$\color{#FF6800}{ \dfrac { x } { 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 1 } = \color{#FF6800}{ \dfrac { x - 1 } { 5 } }$
 Multiply both sides by the least common multiple for the denominators to eliminate the fraction 
$\color{#FF6800}{ 5 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 10 } = \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 }$
$5 x + 10 = \color{#FF6800}{ 2 } \color{#FF6800}{ x } - 2$
 Move the variable to the left-hand side and change the symbol 
$5 x + 10 \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ x } = - 2$
$5 x \color{#FF6800}{ + } \color{#FF6800}{ 10 } - 2 x = - 2$
 Move the constant to the right side and change the sign 
$5 x - 2 x = - 2 \color{#FF6800}{ - } \color{#FF6800}{ 10 }$
$\color{#FF6800}{ 5 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ x } = - 2 - 10$
 Organize the expression 
$\color{#FF6800}{ 3 } \color{#FF6800}{ x } = - 2 - 10$
$3 x = \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ - } \color{#FF6800}{ 10 }$
 Find the sum of the negative numbers 
$3 x = \color{#FF6800}{ - } \color{#FF6800}{ 12 }$
$\color{#FF6800}{ 3 } \color{#FF6800}{ x } = \color{#FF6800}{ - } \color{#FF6800}{ 12 }$
 Divide both sides by the same number 
$\color{#FF6800}{ x } = \color{#FF6800}{ - } \color{#FF6800}{ 4 }$
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture