qanda-logo
search-icon
Symbol
apple-logo
google-play-logo

Calculator search results

Formula
Solve the inequality
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
Graph
$\dfrac { x } { 12 } + \dfrac { 20 - x } { 4 } \leq 3$
$\dfrac { x } { 12 } + \dfrac { 20 - x } { 4 } \leq 3$
Solution of inequality
$x \geq 12$
$\dfrac{ x }{ 12 } + \dfrac{ 20-x }{ 4 } \leq 3$
$x \geq 12$
$ $ Solve a solution to $ x$
$\dfrac { x } { 12 } + \dfrac { \color{#FF6800}{ 20 } \color{#FF6800}{ - } \color{#FF6800}{ x } } { 4 } \leq 3$
$ $ Organize the expression $ $
$\dfrac { x } { 12 } + \dfrac { \color{#FF6800}{ - } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 20 } } { 4 } \leq 3$
$\color{#FF6800}{ \dfrac { x } { 12 } } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { - x + 20 } { 4 } } \leq \color{#FF6800}{ 3 }$
$ $ Multiply both sides by the least common multiple for the denominators to eliminate the fraction $ $
$\color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \left ( \color{#FF6800}{ - } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 20 } \right ) \leq \color{#FF6800}{ 36 }$
$x + \color{#FF6800}{ 3 } \left ( \color{#FF6800}{ - } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 20 } \right ) \leq 36$
$ $ Multiply each term in parentheses by $ 3$
$x \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ x } + \color{#FF6800}{ 3 } \color{#FF6800}{ \times } \color{#FF6800}{ 20 } \leq 36$
$x - 3 x + \color{#FF6800}{ 3 } \color{#FF6800}{ \times } \color{#FF6800}{ 20 } \leq 36$
$ $ Multiply $ 3 $ and $ 20$
$x - 3 x + \color{#FF6800}{ 60 } \leq 36$
$\color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ x } + 60 \leq 36$
$ $ Calculate between similar terms $ $
$\color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ x } + 60 \leq 36$
$- 2 x \color{#FF6800}{ + } \color{#FF6800}{ 60 } \leq 36$
$ $ Move the constant to the right side and change the sign $ $
$- 2 x \leq 36 \color{#FF6800}{ - } \color{#FF6800}{ 60 }$
$- 2 x \leq \color{#FF6800}{ 36 } \color{#FF6800}{ - } \color{#FF6800}{ 60 }$
$ $ Subtract $ 60 $ from $ 36$
$- 2 x \leq \color{#FF6800}{ - } \color{#FF6800}{ 24 }$
$\color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \leq \color{#FF6800}{ - } \color{#FF6800}{ 24 }$
$ $ Change the symbol of the inequality of both sides, and reverse the symbol of the inequality to the opposite direction $ $
$2 x \geq 24$
$\color{#FF6800}{ 2 } \color{#FF6800}{ x } \geq \color{#FF6800}{ 24 }$
$ $ Divide both sides by the same number $ $
$\color{#FF6800}{ x } \geq \color{#FF6800}{ 12 }$
Solution search results
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple-logo
google-play-logo