$\color{#FF6800}{ \dfrac { 9000 } { 10000 } } \times 100$
$ $ Reduce the fraction to the lowest term $ $
$\color{#FF6800}{ \dfrac { 9 } { 10 } } \times 100$
$\dfrac { 9 } { 10 } \color{#FF6800}{ \times } \color{#FF6800}{ 100 }$
$ $ Natural numbers can be expressed as fractions with a denominator of 1 $ $
$\dfrac { 9 } { 10 } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 100 } { 1 } }$
$\dfrac { 9 } { \color{#FF6800}{ 10 } } \times \dfrac { \color{#FF6800}{ 100 } } { 1 }$
$ $ Reduce all denominators and numerators that can be reduced $ $
$\dfrac { 9 } { \color{#FF6800}{ 1 } } \times \dfrac { \color{#FF6800}{ 10 } } { 1 }$
$\color{#FF6800}{ \dfrac { 9 } { 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 10 } { 1 } }$
$ $ numerator multiply between numerator, and denominators multiply between denominators $ $
$\color{#FF6800}{ \dfrac { 9 \times 10 } { 1 \times 1 } }$
$\dfrac { \color{#FF6800}{ 9 } \color{#FF6800}{ \times } \color{#FF6800}{ 10 } } { 1 \times 1 }$
$ $ Multiply $ 9 $ and $ 10$
$\dfrac { \color{#FF6800}{ 90 } } { 1 \times 1 }$
$\dfrac { 90 } { \color{#FF6800}{ 1 } \times 1 }$
$ $ Multiplying any number by 1 does not change the value $ $
$\dfrac { 90 } { \color{#FF6800}{ 1 } }$
$\dfrac { 90 } { \color{#FF6800}{ 1 } }$
$ $ If the denominator is 1, the denominator can be removed $ $
$\color{#FF6800}{ 90 }$