Calculator search results

Formula
Calculate the value
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
$\dfrac{ 9000 }{ 10000 } \times 100$
$90$
Calculate the value
$\color{#FF6800}{ \dfrac { 9000 } { 10000 } } \times 100$
$ $ Reduce the fraction to the lowest term $ $
$\color{#FF6800}{ \dfrac { 9 } { 10 } } \times 100$
$\dfrac { 9 } { 10 } \color{#FF6800}{ \times } \color{#FF6800}{ 100 }$
$ $ Natural numbers can be expressed as fractions with a denominator of 1 $ $
$\dfrac { 9 } { 10 } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 100 } { 1 } }$
$\dfrac { 9 } { \color{#FF6800}{ 10 } } \times \dfrac { \color{#FF6800}{ 100 } } { 1 }$
$ $ Reduce all denominators and numerators that can be reduced $ $
$\dfrac { 9 } { \color{#FF6800}{ 1 } } \times \dfrac { \color{#FF6800}{ 10 } } { 1 }$
$\color{#FF6800}{ \dfrac { 9 } { 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 10 } { 1 } }$
$ $ numerator multiply between numerator, and denominators multiply between denominators $ $
$\color{#FF6800}{ \dfrac { 9 \times 10 } { 1 \times 1 } }$
$\dfrac { \color{#FF6800}{ 9 } \color{#FF6800}{ \times } \color{#FF6800}{ 10 } } { 1 \times 1 }$
$ $ Multiply $ 9 $ and $ 10$
$\dfrac { \color{#FF6800}{ 90 } } { 1 \times 1 }$
$\dfrac { 90 } { \color{#FF6800}{ 1 } \times 1 }$
$ $ Multiplying any number by 1 does not change the value $ $
$\dfrac { 90 } { \color{#FF6800}{ 1 } }$
$\dfrac { 90 } { \color{#FF6800}{ 1 } }$
$ $ If the denominator is 1, the denominator can be removed $ $
$\color{#FF6800}{ 90 }$
Solution search results
search-thumbnail-(1) $1100000$ (11) $4900000$ (111) $3000000$ 
Sol. (1) $1100000-\dfrac {1100000} {1000000}$ $=1.1$ million (:: 10 $1akh=14$ million) 
(ii) $4900000=\dfrac {4900000} {1000000}$ $=4.9n$ million $\left(111\right)$ $3000000=\dfrac {3000000} {1000000}$ $-3n\right)$ million 
Practice Exercise $1.1$ 
1 Write the following according to Indian Number $sys1cm$ 
(1) $50.040.901$ (ii) $5.243.863$ (iii) $96.241.000$ $\left(1y\right)$ $46.515.215$ 
2 Write the numbers in words in Indian System of Numeration :
1st-6th grade
Other
search-thumbnail-$11\right)$ $4900000=$ $\dfrac {4900000} {1000000}=4.9$ million $\left(11i\right)3000000=$ $\dfrac {3000000} {1000000}=3$ million 
Practice Exercise $1.7$ 
$1$ 1 Write the following according to Indian Number System : 
$11$ 50,040,901 $\left(11\right)$ $5.243.865$ $\left(111\right)$ $96,241.000$ $\left(1y\right)$ $46.515.215$
1st-6th grade
Other
Have you found the solution you wanted?
Try again
Try more features at QANDA!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo