$\dfrac { 7 } { \color{#FF6800}{ 8 } } - \dfrac { 1 } { \color{#FF6800}{ 6 } }$
$ $ The smallest common multiple in denominator is $ 24$
$\dfrac { 7 } { \color{#FF6800}{ 8 } } - \dfrac { 1 } { \color{#FF6800}{ 6 } }$
$\dfrac { 7 } { 8 } - \dfrac { 1 } { 6 }$
$ $ Multiply the denominator and the numerator so that the denominator is the smallest common multiple $ $
$\dfrac { 7 \times \color{#FF6800}{ 3 } } { 8 \times \color{#FF6800}{ 3 } } - \dfrac { 1 \times \color{#FF6800}{ 4 } } { 6 \times \color{#FF6800}{ 4 } }$
$\color{#FF6800}{ \dfrac { \color{#FF6800}{ 7 } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } } { \color{#FF6800}{ 8 } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } } } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { \color{#FF6800}{ 1 } \color{#FF6800}{ \times } \color{#FF6800}{ 4 } } { \color{#FF6800}{ 6 } \color{#FF6800}{ \times } \color{#FF6800}{ 4 } } }$
$ $ Organize the expression $ $
$\color{#FF6800}{ \dfrac { \color{#FF6800}{ 21 } } { \color{#FF6800}{ 24 } } } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { \color{#FF6800}{ 4 } } { \color{#FF6800}{ 24 } } }$
$\color{#FF6800}{ \dfrac { \color{#FF6800}{ 21 } } { \color{#FF6800}{ 24 } } } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { \color{#FF6800}{ 4 } } { \color{#FF6800}{ 24 } } }$
$ $ Since the denominator is the same as $ 24 $ , combine the fractions into one $ $
$\color{#FF6800}{ \dfrac { \color{#FF6800}{ 21 } \color{#FF6800}{ - } \color{#FF6800}{ 4 } } { \color{#FF6800}{ 24 } } }$
$\dfrac { \color{#FF6800}{ 21 } \color{#FF6800}{ - } \color{#FF6800}{ 4 } } { 24 }$
$ $ Subtract $ 4 $ from $ 21$
$\dfrac { \color{#FF6800}{ 17 } } { 24 }$