$\dfrac { 7 } { \color{#FF6800}{ 10 } } - \dfrac { 3 } { \color{#FF6800}{ 5 } }$
$ $ The smallest common multiple in denominator is $ 10$
$\dfrac { 7 } { \color{#FF6800}{ 10 } } - \dfrac { 3 } { \color{#FF6800}{ 5 } }$
$\dfrac { 7 } { 10 } - \dfrac { 3 } { 5 }$
$ $ Multiply the denominator and the numerator so that the denominator is the smallest common multiple $ $
$\dfrac { 7 } { 10 } - \dfrac { 3 \times \color{#FF6800}{ 2 } } { 5 \times \color{#FF6800}{ 2 } }$
$\color{#FF6800}{ \dfrac { \color{#FF6800}{ 7 } } { \color{#FF6800}{ 10 } } } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { \color{#FF6800}{ 3 } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } } { \color{#FF6800}{ 5 } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } } }$
$ $ Organize the expression $ $
$\color{#FF6800}{ \dfrac { \color{#FF6800}{ 7 } } { \color{#FF6800}{ 10 } } } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { \color{#FF6800}{ 6 } } { \color{#FF6800}{ 10 } } }$
$\color{#FF6800}{ \dfrac { \color{#FF6800}{ 7 } } { \color{#FF6800}{ 10 } } } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { \color{#FF6800}{ 6 } } { \color{#FF6800}{ 10 } } }$
$ $ Since the denominator is the same as $ 10 $ , combine the fractions into one $ $
$\color{#FF6800}{ \dfrac { \color{#FF6800}{ 7 } \color{#FF6800}{ - } \color{#FF6800}{ 6 } } { \color{#FF6800}{ 10 } } }$
$\dfrac { \color{#FF6800}{ 7 } \color{#FF6800}{ - } \color{#FF6800}{ 6 } } { 10 }$
$ $ Subtract $ 6 $ from $ 7$
$\dfrac { \color{#FF6800}{ 1 } } { 10 }$