# Calculator search results

Formula
Solve the equation
Graph
$y = \dfrac { 6 } { x }$
$y = \dfrac { \sqrt{ 3 } } { 3 }$
Asymptote
$y = 0$, $x = 0$
Standard form
$y = \dfrac { 6 } { x }$
Domain
$y \neq 0$
Range
$x \neq 0$
$\dfrac{ 6 }{ x } = \dfrac{ \sqrt{ 3 } }{ 3 }$
$x = 6 \sqrt{ 3 }$
Solve the fractional equation
$\color{#FF6800}{ \dfrac { 6 } { x } } = \color{#FF6800}{ \dfrac { \sqrt{ 3 } } { 3 } }$
 If $\frac{a(x)}{b(x)} = \frac{c(x)}{d(x)}$ is valid, it is $\begin{cases} a(x) d(x) = b(x) c(x) \\ b(x) \ne 0 \\ d(x) \ne 0 \end{cases}$
$\begin{cases} \color{#FF6800}{ 6 } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } = \color{#FF6800}{ x } \sqrt{ \color{#FF6800}{ 3 } } \\ \color{#FF6800}{ x } \neq \color{#FF6800}{ 0 } \\ \color{#FF6800}{ 3 } \neq \color{#FF6800}{ 0 } \end{cases}$
$\begin{cases} \color{#FF6800}{ 6 } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } = \color{#FF6800}{ x } \sqrt{ \color{#FF6800}{ 3 } } \\ \color{#FF6800}{ x } \neq \color{#FF6800}{ 0 } \\ \color{#FF6800}{ 3 } \neq \color{#FF6800}{ 0 } \end{cases}$
 Simplify the expression 
$\begin{cases} \color{#FF6800}{ 18 } = \sqrt{ \color{#FF6800}{ 3 } } \color{#FF6800}{ x } \\ \color{#FF6800}{ x } \neq \color{#FF6800}{ 0 } \\ \color{#FF6800}{ 3 } \neq \color{#FF6800}{ 0 } \end{cases}$
$\begin{cases} \color{#FF6800}{ 18 } = \sqrt{ \color{#FF6800}{ 3 } } \color{#FF6800}{ x } \\ x \neq 0 \\ 3 \neq 0 \end{cases}$
 Solve a solution to $x$
$\begin{cases} \color{#FF6800}{ x } = \color{#FF6800}{ 6 } \sqrt{ \color{#FF6800}{ 3 } } \\ x \neq 0 \\ 3 \neq 0 \end{cases}$
$\begin{cases} \color{#FF6800}{ x } = \color{#FF6800}{ 6 } \sqrt{ \color{#FF6800}{ 3 } } \\ \color{#FF6800}{ x } \neq \color{#FF6800}{ 0 } \\ \color{#FF6800}{ 3 } \neq \color{#FF6800}{ 0 } \end{cases}$
 Substitute $x = 6 \sqrt{ 3 }$ for unresolved equations or inequalities 
$\begin{cases} \color{#FF6800}{ x } = \color{#FF6800}{ 6 } \sqrt{ \color{#FF6800}{ 3 } } \\ \color{#FF6800}{ 6 } \sqrt{ \color{#FF6800}{ 3 } } \neq \color{#FF6800}{ 0 } \\ \color{#FF6800}{ 3 } \neq \color{#FF6800}{ 0 } \end{cases}$
$\begin{cases} x = 6 \sqrt{ 3 } \\ \color{#FF6800}{ 6 } \sqrt{ \color{#FF6800}{ 3 } } \neq \color{#FF6800}{ 0 } \\ 3 \neq 0 \end{cases}$
 For integers $a, b, c, n$ , if $c \ne (-\frac{a}{b})^n$ is valid, it is $a + b \sqrt[n]{c} \ne 0$
$\begin{cases} x = 6 \sqrt{ 3 } \\ \text{There are countless solutions} \\ 3 \neq 0 \end{cases}$
$\begin{cases} \color{#FF6800}{ x } = \color{#FF6800}{ 6 } \sqrt{ \color{#FF6800}{ 3 } } \\ \text{There are countless solutions} \\ \color{#FF6800}{ 3 } \neq \color{#FF6800}{ 0 } \end{cases}$
 Ignore the cases where the system of equations where there are infinitely many solutions. 
$\begin{cases} \color{#FF6800}{ x } = \color{#FF6800}{ 6 } \sqrt{ \color{#FF6800}{ 3 } } \\ \color{#FF6800}{ 3 } \neq \color{#FF6800}{ 0 } \end{cases}$
$\begin{cases} x = 6 \sqrt{ 3 } \\ \color{#FF6800}{ 3 } \neq \color{#FF6800}{ 0 } \end{cases}$
 There are infinitely many solutions if both sides of $\ne$ are different. 
$\begin{cases} x = 6 \sqrt{ 3 } \\ \text{There are countless solutions} \end{cases}$
$\begin{cases} \color{#FF6800}{ x } = \color{#FF6800}{ 6 } \sqrt{ \color{#FF6800}{ 3 } } \\ \text{There are countless solutions} \end{cases}$
 Ignore the cases where the system of equations where there are infinitely many solutions. 
$\color{#FF6800}{ x } = \color{#FF6800}{ 6 } \sqrt{ \color{#FF6800}{ 3 } }$
 그래프 보기 
Graph
Solution search results