$\color{#FF6800}{ \dfrac { 6 } { x } } = \color{#FF6800}{ \dfrac { \sqrt{ 3 } } { 3 } }$
$ $ If $ \frac{a(x)}{b(x)} = \frac{c(x)}{d(x)} $ is valid, it is $ \begin{cases} a(x) d(x) = b(x) c(x) \\ b(x) \ne 0 \\ d(x) \ne 0 \end{cases}$
$\begin{cases} \color{#FF6800}{ 6 } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } = \color{#FF6800}{ x } \sqrt{ \color{#FF6800}{ 3 } } \\ \color{#FF6800}{ x } \neq \color{#FF6800}{ 0 } \\ \color{#FF6800}{ 3 } \neq \color{#FF6800}{ 0 } \end{cases}$
$\begin{cases} \color{#FF6800}{ 6 } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } = \color{#FF6800}{ x } \sqrt{ \color{#FF6800}{ 3 } } \\ \color{#FF6800}{ x } \neq \color{#FF6800}{ 0 } \\ \color{#FF6800}{ 3 } \neq \color{#FF6800}{ 0 } \end{cases}$
$ $ Simplify the expression $ $
$\begin{cases} \color{#FF6800}{ 18 } = \sqrt{ \color{#FF6800}{ 3 } } \color{#FF6800}{ x } \\ \color{#FF6800}{ x } \neq \color{#FF6800}{ 0 } \\ \color{#FF6800}{ 3 } \neq \color{#FF6800}{ 0 } \end{cases}$
$\begin{cases} \color{#FF6800}{ 18 } = \sqrt{ \color{#FF6800}{ 3 } } \color{#FF6800}{ x } \\ x \neq 0 \\ 3 \neq 0 \end{cases}$
$ $ Solve a solution to $ x$
$\begin{cases} \color{#FF6800}{ x } = \color{#FF6800}{ 6 } \sqrt{ \color{#FF6800}{ 3 } } \\ x \neq 0 \\ 3 \neq 0 \end{cases}$
$\begin{cases} \color{#FF6800}{ x } = \color{#FF6800}{ 6 } \sqrt{ \color{#FF6800}{ 3 } } \\ \color{#FF6800}{ x } \neq \color{#FF6800}{ 0 } \\ \color{#FF6800}{ 3 } \neq \color{#FF6800}{ 0 } \end{cases}$
$ $ Substitute $ x = 6 \sqrt{ 3 } $ for unresolved equations or inequalities $ $
$\begin{cases} \color{#FF6800}{ x } = \color{#FF6800}{ 6 } \sqrt{ \color{#FF6800}{ 3 } } \\ \color{#FF6800}{ 6 } \sqrt{ \color{#FF6800}{ 3 } } \neq \color{#FF6800}{ 0 } \\ \color{#FF6800}{ 3 } \neq \color{#FF6800}{ 0 } \end{cases}$
$\begin{cases} x = 6 \sqrt{ 3 } \\ \color{#FF6800}{ 6 } \sqrt{ \color{#FF6800}{ 3 } } \neq \color{#FF6800}{ 0 } \\ 3 \neq 0 \end{cases}$
$ $ For integers $ a, b, c, n $ , if $ c \ne (-\frac{a}{b})^n $ is valid, it is $ a + b \sqrt[n]{c} \ne 0$
$\begin{cases} x = 6 \sqrt{ 3 } \\ \text{There are countless solutions} \\ 3 \neq 0 \end{cases}$
$\begin{cases} \color{#FF6800}{ x } = \color{#FF6800}{ 6 } \sqrt{ \color{#FF6800}{ 3 } } \\ \text{There are countless solutions} \\ \color{#FF6800}{ 3 } \neq \color{#FF6800}{ 0 } \end{cases}$
$ $ Ignore the cases where the system of equations where there are infinitely many solutions. $ $
$\begin{cases} \color{#FF6800}{ x } = \color{#FF6800}{ 6 } \sqrt{ \color{#FF6800}{ 3 } } \\ \color{#FF6800}{ 3 } \neq \color{#FF6800}{ 0 } \end{cases}$
$\begin{cases} x = 6 \sqrt{ 3 } \\ \color{#FF6800}{ 3 } \neq \color{#FF6800}{ 0 } \end{cases}$
$ $ There are infinitely many solutions if both sides of $ \ne $ are different. $ $
$\begin{cases} x = 6 \sqrt{ 3 } \\ \text{There are countless solutions} \end{cases}$
$\begin{cases} \color{#FF6800}{ x } = \color{#FF6800}{ 6 } \sqrt{ \color{#FF6800}{ 3 } } \\ \text{There are countless solutions} \end{cases}$
$ $ Ignore the cases where the system of equations where there are infinitely many solutions. $ $
$\color{#FF6800}{ x } = \color{#FF6800}{ 6 } \sqrt{ \color{#FF6800}{ 3 } }$