# Calculator search results

Formula
Calculate the value
$\dfrac{ 6 }{ \sqrt{ 35 } } \times \sqrt{ 7 } + \dfrac{ \sqrt{ 90 } }{ 6 } \div \dfrac{ 5 \sqrt{ 2 } }{ 8 }$
$2 \sqrt{ 5 }$
Calculate the value
$\color{#FF6800}{ \dfrac { 6 } { \sqrt{ 35 } } } \sqrt{ \color{#FF6800}{ 7 } } + \dfrac { \sqrt{ 90 } } { 6 } \div \dfrac { 5 \sqrt{ 2 } } { 8 }$
 Arrange the terms multiplied by fractions 
$\color{#FF6800}{ \dfrac { 6 \sqrt{ 7 } } { \sqrt{ 35 } } } + \dfrac { \sqrt{ 90 } } { 6 } \div \dfrac { 5 \sqrt{ 2 } } { 8 }$
$\color{#FF6800}{ \dfrac { 6 \sqrt{ 7 } } { \sqrt{ 35 } } } + \dfrac { \sqrt{ 90 } } { 6 } \div \dfrac { 5 \sqrt{ 2 } } { 8 }$
 Calculate the expression 
$\color{#FF6800}{ \dfrac { 6 \sqrt{ 5 } } { 5 } } + \dfrac { \sqrt{ 90 } } { 6 } \div \dfrac { 5 \sqrt{ 2 } } { 8 }$
$\dfrac { 6 \sqrt{ 5 } } { 5 } + \color{#FF6800}{ \dfrac { \sqrt{ 90 } } { 6 } } \color{#FF6800}{ \div } \color{#FF6800}{ \dfrac { 5 \sqrt{ 2 } } { 8 } }$
 Arrange the terms multiplied by fractions 
$\dfrac { 6 \sqrt{ 5 } } { 5 } + \color{#FF6800}{ \dfrac { \sqrt{ 90 } \times 8 } { 6 \left ( 5 \sqrt{ 2 } \right ) } }$
$\dfrac { 6 \sqrt{ 5 } } { 5 } + \dfrac { \sqrt{ \color{#FF6800}{ 90 } } \color{#FF6800}{ \times } \color{#FF6800}{ 8 } } { 6 \left ( 5 \sqrt{ 2 } \right ) }$
 Simplify the expression 
$\dfrac { 6 \sqrt{ 5 } } { 5 } + \dfrac { \color{#FF6800}{ 24 } \sqrt{ \color{#FF6800}{ 10 } } } { 6 \left ( 5 \sqrt{ 2 } \right ) }$
$\dfrac { 6 \sqrt{ 5 } } { 5 } + \color{#FF6800}{ \dfrac { 24 \sqrt{ 10 } } { 6 \left ( 5 \sqrt{ 2 } \right ) } }$
 Reduce the fraction 
$\dfrac { 6 \sqrt{ 5 } } { 5 } + \color{#FF6800}{ \dfrac { 4 \sqrt{ 10 } } { 5 \sqrt{ 2 } } }$
$\dfrac { 6 \sqrt{ 5 } } { 5 } + \color{#FF6800}{ \dfrac { 4 \sqrt{ 10 } } { 5 \sqrt{ 2 } } }$
 Calculate the expression 
$\dfrac { 6 \sqrt{ 5 } } { 5 } + \color{#FF6800}{ \dfrac { 4 \sqrt{ 5 } } { 5 } }$
$\color{#FF6800}{ \dfrac { 6 \sqrt{ 5 } } { 5 } } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { 4 \sqrt{ 5 } } { 5 } }$
 Combine the fraction with the same denominator 
$\dfrac { \color{#FF6800}{ 6 } \sqrt{ \color{#FF6800}{ 5 } } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \sqrt{ \color{#FF6800}{ 5 } } } { 5 }$
$\dfrac { \color{#FF6800}{ 6 } \sqrt{ \color{#FF6800}{ 5 } } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \sqrt{ \color{#FF6800}{ 5 } } } { 5 }$
 Calculate between similar terms 
$\dfrac { \color{#FF6800}{ 10 } \sqrt{ \color{#FF6800}{ 5 } } } { 5 }$
$\color{#FF6800}{ \dfrac { 10 \sqrt{ 5 } } { 5 } }$
 Reduce the fraction 
$\color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 5 } }$
Solution search results