# Calculator search results

Formula
Find the sum of the fractions
$\dfrac{ 54 }{ 99 } + \dfrac{ 3 }{ 9 }$
$\dfrac { 29 } { 33 }$
Find the sum of the fractions
$\color{#FF6800}{ \dfrac { 54 } { 99 } } + \dfrac { 3 } { 9 }$
 Do the reduction of the fraction format 
$\color{#FF6800}{ \dfrac { 6 } { 11 } } + \dfrac { 3 } { 9 }$
$\dfrac { 6 } { 11 } + \color{#FF6800}{ \dfrac { 3 } { 9 } }$
 Do the reduction of the fraction format 
$\dfrac { 6 } { 11 } + \color{#FF6800}{ \dfrac { 1 } { 3 } }$
$\dfrac { 6 } { \color{#FF6800}{ 11 } } + \dfrac { 1 } { \color{#FF6800}{ 3 } }$
 The smallest common multiple in denominator is $33$
$\dfrac { 6 } { \color{#FF6800}{ 11 } } + \dfrac { 1 } { \color{#FF6800}{ 3 } }$
$\dfrac { 6 } { 11 } + \dfrac { 1 } { 3 }$
 Multiply the denominator and the numerator so that the denominator is the smallest common multiple 
$\dfrac { 6 \times \color{#FF6800}{ 3 } } { 11 \times \color{#FF6800}{ 3 } } + \dfrac { 1 \times \color{#FF6800}{ 11 } } { 3 \times \color{#FF6800}{ 11 } }$
$\color{#FF6800}{ \dfrac { 6 \times 3 } { 11 \times 3 } } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { 1 \times 11 } { 3 \times 11 } }$
 Organize the expression 
$\color{#FF6800}{ \dfrac { 18 } { 33 } } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { 11 } { 33 } }$
$\color{#FF6800}{ \dfrac { 18 } { 33 } } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { 11 } { 33 } }$
 Since the denominator is the same as $33$ , combine the fractions into one 
$\color{#FF6800}{ \dfrac { 18 + 11 } { 33 } }$
$\dfrac { \color{#FF6800}{ 18 } \color{#FF6800}{ + } \color{#FF6800}{ 11 } } { 33 }$
 Add $18$ and $11$
$\dfrac { \color{#FF6800}{ 29 } } { 33 }$
Solution search results