Symbol

# Calculator search results

Formula
Calculate the value
$\dfrac{ 5 \sqrt{ 3 } }{ \sqrt{ 45 } } + \dfrac{ 10 \sqrt{ 3 } }{ \sqrt{ 125 } }$
$\dfrac { 11 \sqrt{ 15 } } { 15 }$
Calculate the value
$\color{#FF6800}{ \dfrac { 5 \sqrt{ 3 } } { \sqrt{ 45 } } } + \dfrac { 10 \sqrt{ 3 } } { \sqrt{ 125 } }$
 Calculate the expression 
$\color{#FF6800}{ \dfrac { 5 \sqrt{ 15 } } { 15 } } + \dfrac { 10 \sqrt{ 3 } } { \sqrt{ 125 } }$
$\color{#FF6800}{ \dfrac { 5 \sqrt{ 15 } } { 15 } } + \dfrac { 10 \sqrt{ 3 } } { \sqrt{ 125 } }$
 Reduce the fraction 
$\color{#FF6800}{ \dfrac { \sqrt{ 15 } } { 3 } } + \dfrac { 10 \sqrt{ 3 } } { \sqrt{ 125 } }$
$\dfrac { \sqrt{ 15 } } { 3 } + \color{#FF6800}{ \dfrac { 10 \sqrt{ 3 } } { \sqrt{ 125 } } }$
 Calculate the expression 
$\dfrac { \sqrt{ 15 } } { 3 } + \color{#FF6800}{ \dfrac { 2 \sqrt{ 15 } } { 5 } }$
$\color{#FF6800}{ \dfrac { \sqrt{ 15 } } { 3 } } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { 2 \sqrt{ 15 } } { 5 } }$
 Write all numerators above the least common denominator 
$\color{#FF6800}{ \dfrac { 5 \sqrt{ 15 } + 6 \sqrt{ 15 } } { 15 } }$
$\dfrac { \color{#FF6800}{ 5 } \sqrt{ \color{#FF6800}{ 15 } } \color{#FF6800}{ + } \color{#FF6800}{ 6 } \sqrt{ \color{#FF6800}{ 15 } } } { 15 }$
 Calculate between similar terms 
$\dfrac { \color{#FF6800}{ 11 } \sqrt{ \color{#FF6800}{ 15 } } } { 15 }$
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture