$\dfrac { 5 } { \color{#FF6800}{ 9 } } - \dfrac { 1 } { \color{#FF6800}{ 6 } }$
$ $ The smallest common multiple in denominator is $ 18$
$\dfrac { 5 } { \color{#FF6800}{ 9 } } - \dfrac { 1 } { \color{#FF6800}{ 6 } }$
$\dfrac { 5 } { 9 } - \dfrac { 1 } { 6 }$
$ $ Multiply the denominator and the numerator so that the denominator is the smallest common multiple $ $
$\dfrac { 5 \times \color{#FF6800}{ 2 } } { 9 \times \color{#FF6800}{ 2 } } - \dfrac { 1 \times \color{#FF6800}{ 3 } } { 6 \times \color{#FF6800}{ 3 } }$
$\color{#FF6800}{ \dfrac { \color{#FF6800}{ 5 } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } } { \color{#FF6800}{ 9 } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } } } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { \color{#FF6800}{ 1 } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } } { \color{#FF6800}{ 6 } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } } }$
$ $ Organize the expression $ $
$\color{#FF6800}{ \dfrac { \color{#FF6800}{ 10 } } { \color{#FF6800}{ 18 } } } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { \color{#FF6800}{ 3 } } { \color{#FF6800}{ 18 } } }$
$\color{#FF6800}{ \dfrac { \color{#FF6800}{ 10 } } { \color{#FF6800}{ 18 } } } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { \color{#FF6800}{ 3 } } { \color{#FF6800}{ 18 } } }$
$ $ Since the denominator is the same as $ 18 $ , combine the fractions into one $ $
$\color{#FF6800}{ \dfrac { \color{#FF6800}{ 10 } \color{#FF6800}{ - } \color{#FF6800}{ 3 } } { \color{#FF6800}{ 18 } } }$
$\dfrac { \color{#FF6800}{ 10 } \color{#FF6800}{ - } \color{#FF6800}{ 3 } } { 18 }$
$ $ Subtract $ 3 $ from $ 10$
$\dfrac { \color{#FF6800}{ 7 } } { 18 }$