Calculator search results

Formula
Solve the equation
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
Graph
$y = \dfrac { 5 } { 6 } x + 1$
$y = 0.5 x + \dfrac { 7 } { 6 }$
$x$-intercept
$\left ( - \dfrac { 6 } { 5 } , 0 \right )$
$y$-intercept
$\left ( 0 , 1 \right )$
$x$-intercept
$\left ( - \dfrac { 7 } { 3 } , 0 \right )$
$y$-intercept
$\left ( 0 , \dfrac { 7 } { 6 } \right )$
$\dfrac{ 5 }{ 6 } x+1 = 0.5x+ \dfrac{ 7 }{ 6 }$
$x = \dfrac { 1 } { 2 }$
$ $ Solve a solution to $ x$
$\color{#FF6800}{ \dfrac { 5 } { 6 } } \color{#FF6800}{ x } + 1 = 0.5 x + \dfrac { 7 } { 6 }$
$ $ Calculate the multiplication expression $ $
$\color{#FF6800}{ \dfrac { 5 x } { 6 } } + 1 = 0.5 x + \dfrac { 7 } { 6 }$
$\dfrac { 5 x } { 6 } + 1 = \color{#FF6800}{ 0.5 } \color{#FF6800}{ x } + \dfrac { 7 } { 6 }$
$ $ Calculate the multiplication expression $ $
$\dfrac { 5 x } { 6 } + 1 = \color{#FF6800}{ \dfrac { x } { 2 } } + \dfrac { 7 } { 6 }$
$\color{#FF6800}{ \dfrac { 5 x } { 6 } } \color{#FF6800}{ + } \color{#FF6800}{ 1 } = \color{#FF6800}{ \dfrac { x } { 2 } } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { 7 } { 6 } }$
$ $ Multiply both sides by the least common multiple for the denominators to eliminate the fraction $ $
$\color{#FF6800}{ 5 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 6 } = \color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 7 }$
$5 x + 6 = \color{#FF6800}{ 3 } \color{#FF6800}{ x } + 7$
$ $ Move the variable to the left-hand side and change the symbol $ $
$5 x + 6 \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ x } = 7$
$5 x \color{#FF6800}{ + } \color{#FF6800}{ 6 } - 3 x = 7$
$ $ Move the constant to the right side and change the sign $ $
$5 x - 3 x = 7 \color{#FF6800}{ - } \color{#FF6800}{ 6 }$
$\color{#FF6800}{ 5 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ x } = 7 - 6$
$ $ Organize the expression $ $
$\color{#FF6800}{ 2 } \color{#FF6800}{ x } = 7 - 6$
$2 x = \color{#FF6800}{ 7 } \color{#FF6800}{ - } \color{#FF6800}{ 6 }$
$ $ Subtract $ 6 $ from $ 7$
$2 x = \color{#FF6800}{ 1 }$
$\color{#FF6800}{ 2 } \color{#FF6800}{ x } = \color{#FF6800}{ 1 }$
$ $ Divide both sides by the same number $ $
$\color{#FF6800}{ x } = \color{#FF6800}{ \dfrac { 1 } { 2 } }$
$ $ 그래프 보기 $ $
Graph
Solution search results
search-thumbnail-$2$ $\dfrac {5} {6}x+1=-\dfrac {19} {6}$
10th-13th grade
Other
search-thumbnail-Can you answer this? 
$20$ $25$ 

$18$ 

$\left($ 
$\left(A\right)$ $A\right)2$ 
$21frac\left(5\right)\left(9\right)$ \) 
$\left(B\right)$ $B\right)$ $1\left(211$ 
$\left(C\right)$ $1\left(21$ $21+rac\left(7\right)+9\right)$ \) 
$\left(D\right)$ $1\left(2\right)$ 2\frac{8}{9} 
$ac\left(8\right)\left(9\right)$ \) $9:18PM\sqrt{} $
1st-6th grade
Algebra
search-thumbnail-Which of the following rational numbers are 
equivalent? 
$0Ptionsy$ 
A \frac{5}{6}, \frac{30}{36} 
B $s\sqrt{rac\left(} -2\right)\left(3\right)\sqrt{1rac} \sqrt{4\right)16\right)4} $ 
C $s\sqrt{11aC\left(} -4\right)1-7b,\sqrt{1rac\left(16\sqrt{35\right)9} } $ 
D \frac{1}{2},\frac{3}{8}
7th-9th grade
Other
Have you found the solution you wanted?
Try again
Try more features at QANDA!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo