# Calculator search results

Formula
Calculate the value
$\dfrac{ 5 }{ \sqrt{ 5 } -2 }$
$5 \sqrt{ 5 } + 10$
Calculate the value
$\dfrac { 5 } { \sqrt{ 5 } - 2 }$
 Find the conjugate irrational number of denominator 
$\color{#FF6800}{ \dfrac { 5 } { \sqrt{ 5 } - 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { \sqrt{ 5 } + 2 } { \sqrt{ 5 } + 2 } }$
$\dfrac { 5 } { \sqrt{ 5 } - 2 } \times \dfrac { \sqrt{ 5 } + 2 } { \sqrt{ 5 } + 2 }$
 The denominator is multiplied by denominator, and the numerator is multiplied by numerator 
$\color{#FF6800}{ \dfrac { 5 \left ( \sqrt{ 5 } + 2 \right ) } { \left ( \sqrt{ 5 } - 2 \right ) \left ( \sqrt{ 5 } + 2 \right ) } }$
$\dfrac { \color{#FF6800}{ 5 } \left ( \sqrt{ \color{#FF6800}{ 5 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right ) } { \left ( \sqrt{ 5 } - 2 \right ) \left ( \sqrt{ 5 } + 2 \right ) }$
 Multiply each term in parentheses by $5$
$\dfrac { \color{#FF6800}{ 5 } \sqrt{ \color{#FF6800}{ 5 } } \color{#FF6800}{ + } \color{#FF6800}{ 5 } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } } { \left ( \sqrt{ 5 } - 2 \right ) \left ( \sqrt{ 5 } + 2 \right ) }$
$\dfrac { 5 \sqrt{ 5 } + 5 \times 2 } { \left ( \sqrt{ \color{#FF6800}{ 5 } } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) \left ( \sqrt{ \color{#FF6800}{ 5 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right ) }$
 Expand the expression using $\left(a - b\right)\left(a + b\right) = a^{2} - b^{2}$
$\dfrac { 5 \sqrt{ 5 } + 5 \times 2 } { \left ( \sqrt{ \color{#FF6800}{ 5 } } \right ) ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } }$
$\dfrac { 5 \sqrt{ 5 } + 5 \times 2 } { \left ( \sqrt{ \color{#FF6800}{ 5 } } \right ) ^ { \color{#FF6800}{ 2 } } - 2 ^ { 2 } }$
 Calculate power 
$\dfrac { 5 \sqrt{ 5 } + 5 \times 2 } { \color{#FF6800}{ 5 } - 2 ^ { 2 } }$
$\dfrac { 5 \sqrt{ 5 } + 5 \times 2 } { 5 - \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } }$
 Calculate power 
$\dfrac { 5 \sqrt{ 5 } + 5 \times 2 } { 5 - \color{#FF6800}{ 4 } }$
$\dfrac { 5 \sqrt{ 5 } + \color{#FF6800}{ 5 } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } } { 5 - 4 }$
 Multiply $5$ and $2$
$\dfrac { 5 \sqrt{ 5 } + \color{#FF6800}{ 10 } } { 5 - 4 }$
$\dfrac { 5 \sqrt{ 5 } + 10 } { \color{#FF6800}{ 5 } \color{#FF6800}{ - } \color{#FF6800}{ 4 } }$
 Subtract $4$ from $5$
$\dfrac { 5 \sqrt{ 5 } + 10 } { \color{#FF6800}{ 1 } }$
$\dfrac { 5 \sqrt{ 5 } + 10 } { \color{#FF6800}{ 1 } }$
 If the denominator is 1, the denominator can be removed 
$\color{#FF6800}{ 5 } \sqrt{ \color{#FF6800}{ 5 } } \color{#FF6800}{ + } \color{#FF6800}{ 10 }$
Solution search results