# Calculator search results

Formula
Find the sum of the fractions
$\dfrac{ 4 }{ 9 } + \dfrac{ 6 }{ 18 } + \dfrac{ 5 }{ 3 }$
$\dfrac { 22 } { 9 }$
Find the sum of the fractions
$\dfrac { 4 } { 9 } + \color{#FF6800}{ \dfrac { 6 } { 18 } } + \dfrac { 5 } { 3 }$
 Do the reduction of the fraction format 
$\dfrac { 4 } { 9 } + \color{#FF6800}{ \dfrac { 1 } { 3 } } + \dfrac { 5 } { 3 }$
$\dfrac { 4 } { \color{#FF6800}{ 9 } } + \dfrac { 1 } { \color{#FF6800}{ 3 } } + \dfrac { 5 } { \color{#FF6800}{ 3 } }$
 The smallest common multiple in denominator is $9$
$\dfrac { 4 } { \color{#FF6800}{ 9 } } + \dfrac { 1 } { \color{#FF6800}{ 3 } } + \dfrac { 5 } { \color{#FF6800}{ 3 } }$
$\dfrac { 4 } { 9 } + \dfrac { 1 } { 3 } + \dfrac { 5 } { 3 }$
 Multiply the denominator and the numerator so that the denominator is the smallest common multiple 
$\dfrac { 4 } { 9 } + \dfrac { 1 \times \color{#FF6800}{ 3 } } { 3 \times \color{#FF6800}{ 3 } } + \dfrac { 5 \times \color{#FF6800}{ 3 } } { 3 \times \color{#FF6800}{ 3 } }$
$\color{#FF6800}{ \dfrac { 4 } { 9 } } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { 1 \times 3 } { 3 \times 3 } } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { 5 \times 3 } { 3 \times 3 } }$
 Organize the expression 
$\color{#FF6800}{ \dfrac { 4 } { 9 } } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { 3 } { 9 } } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { 15 } { 9 } }$
$\color{#FF6800}{ \dfrac { 4 } { 9 } } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { 3 } { 9 } } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { 15 } { 9 } }$
 Since the denominator is the same as $9$ , combine the fractions into one 
$\color{#FF6800}{ \dfrac { 4 + 3 + 15 } { 9 } }$
$\dfrac { \color{#FF6800}{ 4 } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \color{#FF6800}{ + } \color{#FF6800}{ 15 } } { 9 }$
 Find the sum 
$\dfrac { \color{#FF6800}{ 22 } } { 9 }$
Solution search results