Calculator search results

Formula
Solve the equation
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
Graph
$y = \dfrac { 4 } { 3 } \left ( x - 3 \right )$
$y = \dfrac { 3 } { 2 } - \dfrac { 1 - x } { 2 }$
$x$-intercept
$\left ( 3 , 0 \right )$
$y$-intercept
$\left ( 0 , - 4 \right )$
$x$-intercept
$\left ( - 2 , 0 \right )$
$y$-intercept
$\left ( 0 , 1 \right )$
$\dfrac{ 4 }{ 3 } \left( x-3 \right) = \dfrac{ 3 }{ 2 } - \dfrac{ 1-x }{ 2 }$
$x = 6$
$ $ Solve a solution to $ x$
$\color{#FF6800}{ \dfrac { 4 } { 3 } } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) = \dfrac { 3 } { 2 } - \dfrac { 1 - x } { 2 }$
$ $ Multiply each term in parentheses by $ \dfrac { 4 } { 3 }$
$\color{#FF6800}{ \dfrac { 4 } { 3 } } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { 4 } { 3 } } \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) = \dfrac { 3 } { 2 } - \dfrac { 1 - x } { 2 }$
$\color{#FF6800}{ \dfrac { 4 } { 3 } } \color{#FF6800}{ x } + \dfrac { 4 } { 3 } \times \left ( - 3 \right ) = \dfrac { 3 } { 2 } - \dfrac { 1 - x } { 2 }$
$ $ Calculate the multiplication expression $ $
$\color{#FF6800}{ \dfrac { 4 x } { 3 } } + \dfrac { 4 } { 3 } \times \left ( - 3 \right ) = \dfrac { 3 } { 2 } - \dfrac { 1 - x } { 2 }$
$\dfrac { 4 x } { 3 } + \color{#FF6800}{ \dfrac { 4 } { 3 } } \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) = \dfrac { 3 } { 2 } - \dfrac { 1 - x } { 2 }$
$ $ Calculate the product of rational numbers $ $
$\dfrac { 4 x } { 3 } \color{#FF6800}{ - } \color{#FF6800}{ 4 } = \dfrac { 3 } { 2 } - \dfrac { 1 - x } { 2 }$
$\color{#FF6800}{ \dfrac { 4 x } { 3 } } \color{#FF6800}{ - } \color{#FF6800}{ 4 } = \color{#FF6800}{ \dfrac { 3 } { 2 } } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 1 - x } { 2 } }$
$ $ Organize the expression $ $
$\color{#FF6800}{ \dfrac { 4 x } { 3 } } \color{#FF6800}{ - } \color{#FF6800}{ 4 } = \color{#FF6800}{ \dfrac { 2 + x } { 2 } }$
$\dfrac { 4 x } { 3 } - 4 = \dfrac { \color{#FF6800}{ 2 } \color{#FF6800}{ + } \color{#FF6800}{ x } } { 2 }$
$ $ Organize the expression $ $
$\dfrac { 4 x } { 3 } - 4 = \dfrac { \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 2 } } { 2 }$
$\color{#FF6800}{ \dfrac { 4 x } { 3 } } \color{#FF6800}{ - } \color{#FF6800}{ 4 } = \color{#FF6800}{ \dfrac { x + 2 } { 2 } }$
$ $ Multiply both sides by the least common multiple for the denominators to eliminate the fraction $ $
$\color{#FF6800}{ 2 } \left ( \color{#FF6800}{ 4 } \color{#FF6800}{ x } \right ) \color{#FF6800}{ - } \color{#FF6800}{ 24 } = \color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 6 }$
$\color{#FF6800}{ 2 } \left ( \color{#FF6800}{ 4 } \color{#FF6800}{ x } \right ) - 24 = 3 x + 6$
$ $ Get rid of unnecessary parentheses $ $
$\color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 4 } \color{#FF6800}{ x } - 24 = 3 x + 6$
$\color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 24 } = \color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 6 }$
$ $ Organize the expression $ $
$\color{#FF6800}{ 8 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ x } = \color{#FF6800}{ 6 } \color{#FF6800}{ + } \color{#FF6800}{ 24 }$
$\color{#FF6800}{ 8 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ x } = 6 + 24$
$ $ Organize the expression $ $
$\color{#FF6800}{ 5 } \color{#FF6800}{ x } = 6 + 24$
$5 x = \color{#FF6800}{ 6 } \color{#FF6800}{ + } \color{#FF6800}{ 24 }$
$ $ Add $ 6 $ and $ 24$
$5 x = \color{#FF6800}{ 30 }$
$\color{#FF6800}{ 5 } \color{#FF6800}{ x } = \color{#FF6800}{ 30 }$
$ $ Divide both sides by the same number $ $
$\color{#FF6800}{ x } = \color{#FF6800}{ 6 }$
$ $ 그래프 보기 $ $
Graph
Solution search results
search-thumbnail-$11.$ Question $11$ 
Solve the $:$ $folloMlng'$ $0<θ<90^{°}$ 
$\left(1\right)$ $2sin^{2}θ=1\right)$ $\left(rac\left(3\right)\left(2\right)\right)$ 
$\left(11\right)$ $3tan^{2}θ+2=3$ 
$\left(111\right)cos^{2}θ$ $11rac\left(1\right)\left(4\right)\right)=$ 
$c\left(1\right)\left(4\right)\right)=11113c\left(1\right)\left(2\right)\right)$
10th-13th grade
Trigonometry
search-thumbnail-Which of the following rational numbers are 
equivalent? 
$0Ptionsy$ 
A \frac{5}{6}, \frac{30}{36} 
B $s\sqrt{rac\left(} -2\right)\left(3\right)\sqrt{1rac} \sqrt{4\right)16\right)4} $ 
C $s\sqrt{11aC\left(} -4\right)1-7b,\sqrt{1rac\left(16\sqrt{35\right)9} } $ 
D \frac{1}{2},\frac{3}{8}
7th-9th grade
Other
Have you found the solution you wanted?
Try again
Try more features at QANDA!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo