qanda-logo
apple logogoogle play logo

Calculator search results

Formula
Calculate the value
Answer
circle-check-icon
expand-arrow-icon
$\dfrac{ 3x ^{ 2 } -4x }{ 2 } - \dfrac{ 2x ^{ 2 } -3x+1 }{ 3 }$
$\dfrac { 5 x ^ { 2 } - 6 x - 2 } { 6 }$
Arrange the rational expression
$\color{#FF6800}{ \dfrac { 3 x ^ { 2 } - 4 x } { 2 } } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 2 x ^ { 2 } - 3 x + 1 } { 3 } }$
$ $ Calculate the expression as a fraction format $ $
$\color{#FF6800}{ \dfrac { 5 x ^ { 2 } - 6 x - 2 } { 6 } }$
Solution search results
search-thumbnail-$score$ 

Deterrnine whether the given expression $1s$ a rational function (RF) or not $\left(NR\right)$ 
$⑤$ 
$g\left(x\right)=\dfrac {/x^{2}-3x+1/} {3x^{-3}+x}$ 
1. $f\left(x\right)=\dfrac {2x^{2}-3x+1} {x-2}$ 6. 
$k\left(x\right)=\dfrac {x^{2}-16} {5}$ 
2. $k\left(x\right)=\dfrac {x^{2}-\sqrt{9} } {5}$ 7. 
$h\left(x\right)=\dfrac {5^{x}+1} {3x}$ 
$3$ $g\left(x\right)=\dfrac {/x^{2}-2x+1/} {3x^{3}-3x}$ 8. 
$4$ $f\left(x\right)=\dfrac {2x^{\dfrac {1} {2}-3x^{\dfrac {1} {4}}}} {x-2}$ 9. $k\left(x\right)=\dfrac {2x^{2}} {4}$ 
5. $f\left(x\right)=\dfrac {5x^{2}-4x-} {x-1}^{1}$ $10$ $g\left(x\right)=\dfrac {x^{2}+4x+4} {2x^{-3}+x}$
10th-13th grade
Algebra
search-thumbnail-Question $25$ 
Given: $f\left(x\right)=3x-7$ $g\left(x\right)=2x^{2}-3x+1$ $h\left(x\right)=4x+1,k\left(x\right)=-x^{2}+3$ 
Find: $\left(\dfrac {g} {k}\right)\left(x\right)$ 
$C$ $\dfrac {2x^{2}-3x+1} {-x^{2}+3}$ 
$C\dfrac {-x^{2}+3} {2x^{2}-3x+1}$ 
$C-2x^{2}-3x+\dfrac {1} {3}$ 
C None of these answers
10th-13th grade
Algebra
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo