# Calculator search results

Formula
Solve the equation
Graph
$y = \dfrac { 3 x } { 5 } + \dfrac { 17 } { 5 }$
$y = \dfrac { x } { 5 } + \dfrac { 21 } { 3 }$
$x$Intercept
$\left ( - \dfrac { 17 } { 3 } , 0 \right )$
$y$Intercept
$\left ( 0 , \dfrac { 17 } { 5 } \right )$
$x$Intercept
$\left ( - 35 , 0 \right )$
$y$Intercept
$\left ( 0 , 7 \right )$
$\dfrac{ 3x }{ 5 } + \dfrac{ 17 }{ 5 } = \dfrac{ x }{ 5 } + \dfrac{ 21 }{ 3 }$
$x = 9$
 Solve a solution to $x$
$\dfrac { 3 x } { 5 } + \dfrac { 17 } { 5 } = \dfrac { x } { 5 } + \color{#FF6800}{ \dfrac { 21 } { 3 } }$
 Reduce the fraction 
$\dfrac { 3 x } { 5 } + \dfrac { 17 } { 5 } = \dfrac { x } { 5 } + \color{#FF6800}{ 7 }$
$\color{#FF6800}{ \dfrac { 3 x } { 5 } } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { 17 } { 5 } } = \color{#FF6800}{ \dfrac { x } { 5 } } \color{#FF6800}{ + } \color{#FF6800}{ 7 }$
 Multiply both sides by the least common multiple for the denominators to eliminate the fraction 
$\color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 17 } = \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 35 }$
$3 x + 17 = \color{#FF6800}{ x } + 35$
 Move the variable to the left-hand side and change the symbol 
$3 x + 17 \color{#FF6800}{ - } \color{#FF6800}{ x } = 35$
$3 x \color{#FF6800}{ + } \color{#FF6800}{ 17 } - x = 35$
 Move the constant to the right side and change the sign 
$3 x - x = 35 \color{#FF6800}{ - } \color{#FF6800}{ 17 }$
$\color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ x } = 35 - 17$
 Organize the expression 
$\color{#FF6800}{ 2 } \color{#FF6800}{ x } = 35 - 17$
$2 x = \color{#FF6800}{ 35 } \color{#FF6800}{ - } \color{#FF6800}{ 17 }$
 Subtract $17$ from $35$
$2 x = \color{#FF6800}{ 18 }$
$\color{#FF6800}{ 2 } \color{#FF6800}{ x } = \color{#FF6800}{ 18 }$
 Divide both sides by the same number 
$\color{#FF6800}{ x } = \color{#FF6800}{ 9 }$
 그래프 보기 
Graph
Solution search results