$\color{#FF6800}{ \dfrac { \color{#FF6800}{ 3 } \color{#FF6800}{ x } } { \color{#FF6800}{ 4 } } } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } { \color{#FF6800}{ 3 } } } = \color{#FF6800}{ 1 }$
$ $ Multiply both sides by the least common multiple for the denominators to eliminate the fraction $ $
$\color{#FF6800}{ 3 } \left ( \color{#FF6800}{ 3 } \color{#FF6800}{ x } \right ) \color{#FF6800}{ - } \left ( \color{#FF6800}{ 4 } \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) \right ) = \color{#FF6800}{ 12 }$
$3 \left ( 3 x \right ) - \left ( \color{#FF6800}{ 4 } \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) \right ) = 12$
$ $ Multiply each term in parentheses by $ 4$
$3 \left ( 3 x \right ) - \left ( \color{#FF6800}{ 4 } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \right ) = 12$
$\color{#FF6800}{ 3 } \left ( \color{#FF6800}{ 3 } \color{#FF6800}{ x } \right ) - \left ( 4 \times 2 x + 4 \right ) = 12$
$ $ Get rid of unnecessary parentheses $ $
$\color{#FF6800}{ 3 } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } \color{#FF6800}{ x } - \left ( 4 \times 2 x + 4 \right ) = 12$
$\color{#FF6800}{ 3 } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } \color{#FF6800}{ x } - \left ( 4 \times 2 x + 4 \right ) = 12$
$ $ Simplify the expression $ $
$\color{#FF6800}{ 9 } \color{#FF6800}{ x } - \left ( 4 \times 2 x + 4 \right ) = 12$
$9 x - \left ( \color{#FF6800}{ 4 } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } \color{#FF6800}{ x } + 4 \right ) = 12$
$ $ Simplify the expression $ $
$9 x - \left ( \color{#FF6800}{ 8 } \color{#FF6800}{ x } + 4 \right ) = 12$
$9 x \color{#FF6800}{ - } \left ( \color{#FF6800}{ 8 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \right ) = 12$
$ $ Change the symbol of each term in parentheses when there is a (-) symbol in front of parentheses $ $
$9 x \color{#FF6800}{ - } \color{#FF6800}{ 8 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 4 } = 12$
$\color{#FF6800}{ 9 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 8 } \color{#FF6800}{ x } - 4 = 12$
$ $ Calculate between similar terms $ $
$\color{#FF6800}{ x } - 4 = 12$
$x \color{#FF6800}{ - } \color{#FF6800}{ 4 } = 12$
$ $ Move the constant to the right side and change the sign $ $
$x = 12 \color{#FF6800}{ + } \color{#FF6800}{ 4 }$
$x = \color{#FF6800}{ 12 } \color{#FF6800}{ + } \color{#FF6800}{ 4 }$
$ $ Add $ 12 $ and $ 4$
$x = \color{#FF6800}{ 16 }$